scholarly journals Preliminary study on physicochemical and biochemical stress markers at poultry slaughterhouse

2017 ◽  
Vol 6 (2) ◽  
Author(s):  
Serena Santonicola ◽  
Maria Francesca Peruzy ◽  
Mariagrazia Girasole ◽  
Nicoletta Murru ◽  
Maria Luisa Cortesi ◽  
...  

Pre-slaughter stress can result in variations in the glycogen storage and metabolic changes of muscle, responsible for quality poultry meat. Aim of this study was to investigate, as preslaughter stress markers and quality meat, physicochemical (pH), biochemical (muscle glycogen content), and chemical (super oxides free radicals) parameters. The carcass quality, as incidence of individual carcass defects, also was evaluate. A number of 20 broilers was processed with two different electrical stunning: high (250 Hz; 640 mA; 60V) (Lot C or control) and low (150 Hz; 360 mA; 60 V) (Lot A) frequency and intensity, using sinusoidal alternating current. As preliminary results, the use of low frequency and intensity induced faster pH decline post mortem and adequate acidification of pH at 3 hours (6.49 Lot C; 6.37 Lot A), better muscle glycogen reserve (0.770 μl/50mL Lot C; 1.497μl/50mL Lot A), and lightly more rapid muscle oxidation (IDF: 0.109 Lot C; 0.122 Lot A), (FOX: 0.131 MeqO2/kg Lot C; 0.140 MeqO2/kg Lot A). The incidence of individual carcass defects sufficient to cause downgrading or rejection, both in Lot C and Lot A, was generally low. In a multidisciplinary approach, to assess animal welfare and quality poultry meat, additional and feasible parameters should be implemented. Monitoring of pH, muscle glycogen reserve and superoxide free radical production measurements might be markers easier to use, routinely, in practice at abattoir. Further studies are needed to evaluate the usefulness of these parameters.

1991 ◽  
Vol 71 (3) ◽  
pp. 1015-1019 ◽  
Author(s):  
M. F. Mottola ◽  
P. D. Christopher

To examine the effects of maternal exercise on liver and skeletal muscle glycogen storage, female Sprague-Dawley rats were randomly divided into control, nonpregnant runner, pregnant nonrunning control, pregnant runner, and prepregnant exercised control groups. The exercise consisted of treadmill running at 30 m/min on a 10 degree incline for 60 min, 5 days/wk. Pregnancy alone, on day 20 of gestation, decreased maternal liver glycogen content and increased red and white gastrocnemius muscle glycogen storage above control values (P less than 0.05). In contrast, exercise in nonpregnant animals augmented liver glycogen storage and also increased red and white gastrocnemius glycogen content (P less than 0.05). By combining exercise and pregnancy, the decrease in liver glycogen storage in the pregnant nonexercised condition was prevented in the pregnant runner group and more glycogen was stored in both the red and white portions of the gastrocnemius than all other groups (P less than 0.05). Fetal body weight was greatest (P less than 0.05) in the pregnant runner group and lowest (P less than 0.05) in the prepregnant exercise control group. These results demonstrate that chronic maternal exercise may change maternal glycogen storage patterns in the liver and skeletal muscle with some alteration in fetal outcome.


1993 ◽  
Vol 75 (2) ◽  
pp. 1019-1023 ◽  
Author(s):  
L. M. Burke ◽  
G. R. Collier ◽  
M. Hargreaves

The effect of the glycemic index (GI) of postexercise carbohydrate intake on muscle glycogen storage was investigated. Five well-trained cyclists undertook an exercise trial to deplete muscle glycogen (2 h at 75% of maximal O2 uptake followed by four 30-s sprints) on two occasions, 1 wk apart. For 24 h after each trial, subjects rested and consumed a diet composed exclusively of high-carbohydrate foods, with one trial providing foods with a high GI (HI GI) and the other providing foods with a low GI (LO GI). Total carbohydrate intake over the 24 h was 10 g/kg of body mass, evenly distributed between meals eaten 0, 4, 8, and 21 h postexercise. Blood samples were drawn before exercise, immediately after exercise, immediately before each meal, and 30, 60, and 90 min post-prandially. Muscle biopsies were taken from the vastus lateralis immediately after exercise and after 24 h. When the effects of the immediate postexercise meal were excluded, the totals of the incremental glucose and insulin areas after each meal were greater (P < or = 0.05) for the HI GI meals than for the LO GI meals. The increase in muscle glycogen content after 24 h of recovery was greater (P = 0.02) with the HI GI diet (106 +/- 11.7 mmol/kg wet wt) than with the LO GI diet (71.5 +/- 6.5 mmol/kg). The results suggest that the most rapid increase in muscle glycogen content during the first 24 h of recovery is achieved by consuming foods with a high GI.


2017 ◽  
Vol 57 (6) ◽  
pp. 1144 ◽  
Author(s):  
Raffaelina Mercogliano ◽  
Serena Santonicola ◽  
Nicoletta Murru ◽  
Orlando Paciello ◽  
Teresa Bruna Pagano ◽  
...  

This study was designed to investigate physicochemical (pH, peroxides) and histological parameters (glycogen reserve, muscle damages), as pre-slaughter stress markers and quality meat evaluators. Ross commercial broilers was processed, either without stunning (NS Lot), or by combining two current levels of 200 mA, 67 V (HV Lot), and 200 mA, 53 V (MV Lot); with two frequencies of 1000 Hz and 800 Hz, using sinusoidal alternating current. The use of high frequency (800 and 1000 Hz) induced the fastest pH decline, already at 3 h postmortem, in Pectoralis major and Quadriceps femoris of MV and HV Lot carcasses (P < 0.05). Moreover HV carcasses showed a lesser production of superoxide free radicals than the NS Lot and MV Lot carcasses (P < 0.05). Changes in the glycogen reserve and the histological muscle damages did not show significant differences in the analysed Lots. The incidence of individual carcass defects, sufficient to cause downgrading or rejection was generally low in each Lot. To assess animal welfare and quality poultry meat the pH monitoring and measurement of superoxide radical production, as additional and feasible parameters, might be markers easier to use in practice at abattoir.


2004 ◽  
Vol 106 (1) ◽  
pp. 99-106 ◽  
Author(s):  
Luc J. C. VAN LOON ◽  
Robyn MURPHY ◽  
Audrey M. OOSTERLAAR ◽  
David CAMERON-SMITH ◽  
Mark HARGREAVES ◽  
...  

It has been speculated that creatine supplementation affects muscle glucose metabolism in humans by increasing muscle glycogen storage and up-regulating GLUT-4 protein expression. In the present study, we assessed the effects of creatine loading and prolonged supplementation on muscle glycogen storage and GLUT-4 mRNA and protein content in humans. A total of 20 subjects participated in a 6-week supplementation period during which creatine or a placebo was ingested. Muscle biopsies were taken before and after 5 days of creatine loading (20 g·day-1) and after 6 weeks of continued supplementation (2 g·day-1). Fasting plasma insulin concentrations, muscle creatine, glycogen and GLUT-4 protein content as well as GLUT-4, glycogen synthase-1 (GS-1) and glycogenin-1 (Gln-1) mRNA expression were determined. Creatine loading significantly increased total creatine, free creatine and creatine phosphate content with a concomitant 18±5% increase in muscle glycogen content (P<0.05). The subsequent use of a 2 g·day-1 maintenance dose for 37 days did not maintain total creatine, creatine phosphate and glycogen content at the elevated levels. The initial increase in muscle glycogen accumulation could not be explained by an increase in fasting plasma insulin concentration, muscle GLUT-4 mRNA and/or protein content. In addition, neither muscle GS-1 nor Gln-1 mRNA expression was affected. We conclude that creatine ingestion itself stimulates muscle glycogen storage, but does not affect muscle GLUT-4 expression.


2008 ◽  
Vol 104 (2) ◽  
pp. 508-512 ◽  
Author(s):  
Dean A. Sewell ◽  
Tristan M. Robinson ◽  
Paul L. Greenhaff

Due to the current lack of clarity, we examined whether 5 days of dietary creatine (Cr) supplementation per se can influence the glycogen content of human skeletal muscle. Six healthy male volunteers participated in the study, reporting to the laboratory on four occasions to exercise to the point of volitional exhaustion, each after 3 days of a controlled normal habitual dietary intake. After a familiarization visit, participants cycled to exhaustion in the absence of any supplementation (N), and then 2 wk later again they cycled to exhaustion after 5 days of supplementation with simple sugars (CHO). Finally, after a further 2 wk, they again cycled to exhaustion after 5 days of Cr supplementation. Muscle samples were taken at rest before exercise, at the time point of exhaustion in visit 1, and at subsequent visit time of exhaustion. There was a treatment effect on muscle total Cr content in Cr compared with N and CHO supplementation ( P < 0.01). Resting muscle glycogen content was elevated above N following CHO ( P < 0.05) but not after Cr. At exhaustion following N, glycogen content was no different from CHO and Cr measured at the same time point during exercise. Cr supplementation under conditions of controlled habitual dietary intake had no effect on muscle glycogen content at rest or after exhaustive exercise. We suggest that any Cr-associated increases in muscle glycogen storage are the result of an interaction between Cr supplementation and other mediators of muscle glycogen storage.


2021 ◽  
Vol 9 (7_suppl4) ◽  
pp. 2325967121S0024
Author(s):  
Manuel Schubert ◽  
Tariq Awan ◽  
Aaron Sciascia ◽  
Emily Pacheco ◽  
Jennifer DeMink ◽  
...  

Objectives: There has been a rise in elbow ulnar collateral ligament (UCL) injuries in youth pitchers over recent years. With forearm flexor-pronator mass fatigue, the dynamic stability provided could be diminished placing greater stress on the UCL. Pitch count limits have been instituted in an attempt to help curtail this rise in throwing injuries, especially in youth athletes. In order to provide more objective data regarding current pitch count limits for youth pitchers, the purpose of this pilot study was to evaluate for potential fatigue of the flexor-pronator mass by assessing changes in medial elbow laxity, noninvasively characterizing changes in muscle glycogen storage within the forearm flexor-pronator mass, and evaluating changes in subjective fatigue, strength, range of motion (ROM), pitching velocity, and accuracy with increasing number of pitches thrown by 10-year-old pitchers up to their recommended 75 pitch count limit. Methods: After appropriate power analysis, male pitchers 10 years of age were recruited for the study (n=22). Pitchers threw a total of 75 pitches divided into sets of 25 pitches, with standardized periods of rest in between throws and sets to best simulate a game. Bilateral medial elbow laxity was measured by applying 10 decanewtons of valgus force with a standardized stress device and utilizing ultrasound imaging (Figures 1A-B) prior to pitching and after each pitching set. The change in medial ulnohumeral joint distance (Figure 1C) after stress was applied was calculated from baseline without stress. Relative changes in muscle glycogen storage, detected as changes in echogenicity, within the flexor carpi radialis (FCR) and the flexor digitorum superficialis (FDS)/flexor carpi ulnaris (FCU) muscles were measured non-invasively with ultrasound-based software (Figures 1D-E) and recorded as fuel percentile. Repeated measures analysis of variance and post-hoc testing were used to determine statistical significance (alpha=0.05). Results: There were no significant differences in medial elbow laxity between arms or time points. There was a trend for similar decline in FCR fuel percentile values between each arm, indicating relative decreases in glycogen storage bilaterally. However, only the throwing arm demonstrated a statistically significant decline in fuel percentile from baseline to after 75 pitches (p=0.05). There were no statistically significant differences across time points for FDS/FCU fuel percentile values. Fatigue measurements for both arms were significantly higher at all time points compared to baseline (p≤0.03). Grip strength of the dominant arm after 75 pitches was significantly decreased compared to after 25 pitches (p=0.02). There were no statistically significant changes in other strength measurements, ROM, velocity, or accuracy between all time points. Conclusions: By the recommended 75 pitch count limit in 10-year-olds, subjective fatigue and a decrease in grip strength had occurred. Furthermore, relative glycogen storage of the flexor-pronator mass of the throwing arm decreased between pitching 50 to 75 pitches, but without an increase in medial elbow gapping. This study provides a foundation and raises questions for further objective testing of physiologic changes that occur throughout increasing pitching to better guide pitch count limits and ensure the safety of young athletes


1996 ◽  
Vol 7 (1) ◽  
pp. 52-54 ◽  
Author(s):  
P. Mariani ◽  
K. Lundström ◽  
U. Gustafsson ◽  
A. -C. Enfält ◽  
R. K. Juneja ◽  
...  

2004 ◽  
Vol 287 (6) ◽  
pp. E1189-E1194 ◽  
Author(s):  
Christian P. Fischer ◽  
Peter Plomgaard ◽  
Anne K. Hansen ◽  
Henriette Pilegaard ◽  
Bengt Saltin ◽  
...  

Contracting skeletal muscle expresses large amounts of IL-6. Because 1) IL-6 mRNA expression in contracting skeletal muscle is enhanced by low muscle glycogen content, and 2) IL-6 increases lipolysis and oxidation of fatty acids, we hypothesized that regular exercise training, associated with increased levels of resting muscle glycogen and enhanced capacity to oxidize fatty acids, would lead to a less-pronounced increase of skeletal muscle IL-6 mRNA in response to acute exercise. Thus, before and after 10 wk of knee extensor endurance training, skeletal muscle IL-6 mRNA expression was determined in young healthy men ( n = 7) in response to 3 h of dynamic knee extensor exercise, using the same relative workload. Maximal power output, time to exhaustion during submaximal exercise, resting muscle glycogen content, and citrate synthase and 3-hydroxyacyl-CoA dehydrogenase enzyme activity were all significantly enhanced by training. IL-6 mRNA expression in resting skeletal muscle did not change in response to training. However, although absolute workload during acute exercise was 44% higher ( P < 0.05) after the training period, skeletal muscle IL-6 mRNA content increased 76-fold ( P < 0.05) in response to exercise before the training period, but only 8-fold ( P < 0.05, relative to rest and pretraining) in response to exercise after training. Furthermore, the exercise-induced increase of plasma IL-6 ( P < 0.05, pre- and posttraining) was not higher after training despite higher absolute work intensity. In conclusion, the magnitude of the exercise-induced IL-6 mRNA expression in contracting human skeletal muscle was markedly reduced by 10 wk of training.


Sign in / Sign up

Export Citation Format

Share Document