scholarly journals Photovoltaic greenhouses: evaluation of shading effect and its influence on agricultural performances

2014 ◽  
Vol 45 (4) ◽  
pp. 168 ◽  
Author(s):  
Sergio Castellano

During the last years, European government remuneration polices promoted the realisation of photovoltaic systems integrated with the structures instead of on ground photovoltaic (PV) plants. In this context, in rural areas, greenhouses covered with PV modules have been developed. In order to interdict the building of greenhouses with an amount of opaque panels on covering not coherent with the plant production, local laws assigned a threshold value, usually between 25% and 50%, of the projection on the soil of the roof. These ranges seem not to be based on scientific evaluation about the agricultural performances required to the building but only on empirical assessments. Purpose of this paper is to contribute to better understand the effect of different configurations of PV panels on the covering of a monospan duo-pitched roof greenhouse in terms of shading effect and energy efficiency during different periods of the year. At this aim, daylighting and insolation analysis were performed by means of the software Autodesk<sup>®</sup> Ecotect<sup>®</sup> Analysis (Autodesk, Inc., San Rafael, CA, USA) on greenhouse model with different covering ratio of polycrystalline photovoltaic panels on the roof.

2020 ◽  
Vol 22 (1-2) ◽  
pp. 21-28
Author(s):  
Iva Batić ◽  
◽  
Željko Đurišić

School and school gym buildings represent a relevant potential for construction of photovoltaic panels, to be integrated into roofs of these buildings. Given that roof structures are passive, construction of photovoltaic systems does not interfere with the building functionality, does not it in any way adversely affect the environment. Installation of photovoltaic systems on building roofs brings the production and consumption of electricity closest possible, therefore such systems ensure significant reduction in power losses in transmission and distribution grids. In addition to locally produced electricity, construction of photovoltaic systems on the school buildings’ roofs produces an educational effect as well. By installing a measuring and acquisition system which would include the measuring data on the photovoltaic power plant production parameters and school electricity consumption into school labs, technology would be closer to students, as well as possibilities to meet the demand for electricity from this basic renewable energy source. This paper presents the results of evaluations of the available roof surfaces of school buildings in Serbia for the photovoltaic panels installation. For each category of school building, an estimate of possible annual production per unit of average roof area was made. Summarizing all the results, estimates of possible installed capacity and annual electricity production for different scenarios are given.


2020 ◽  
pp. 40-49 ◽  
Author(s):  
Angelika Anduła ◽  
Dariusz Heim

Photovoltaic systems have become a common solution for, both small residential buildings as well as large service buildings. When buildings are being designed, it is important to focus on the aspect of the object’s energy efficiency as lowering the energy consumption of a given facility is crucial. The article discusses the use of photovoltaic panels such as so-called BAPV (Building Applied Photovoltaics) and BIPV (Building Installed Photovoltaics) installations as well as photovoltaic thermal systems (PV/T), which generate both electricity and heat. The role of PV installation in so-called zero energy buildings and proposals for future research and solutions are also discussed.


2021 ◽  
Vol 13 (4) ◽  
pp. 282-289
Author(s):  
I. V. Naumov ◽  
D. N. Karamov ◽  
A. N. Tretyakov ◽  
M. A. Yakupova ◽  
E. S. Fedorinovа

The purpose of this study is to study the effect of loading power transformers (PT) in their continuous use on their energy efficiency on a real-life example of existing rural electric networks. It is noted that the vast majority of PT in rural areas have a very low load factor, which leads to an increase in specific losses of electric energy when this is transmitted to various consumers. It is planned to optimize the existing synchronized power supply systems in rural areas by creating new power supply projects in such a way as to integrate existing power sources and ensure the most efficient loading of power transformers for the subsequent transfer of these systems to isolated ones that receive power from distributed generation facilities. As an example, we use data from an electric grid company on loading power transformers in one of the districts of the Irkutsk region. Issues related to the determination of electric energy losses in rural PT at different numerical values of their load factors are considered. A computing device was developed using modern programming tools in the MATLAB system, which has been used to calculate and plot the dependence of power losses in transformers of various capacities on the actual and recommended load factors, as well as the dependence of specific losses during the transit of 1 kVA of power through a power transformer at the actual, recommended and optimal load factors. The analysis of specific losses of electric energy at the actual, recommended and optimal load factors of PT is made. Based on the analysis, the intervals of optimal load factors for different rated power of PT of rural distribution electric networks are proposed. It is noted that to increase the energy efficiency of PT, it is necessary to reduce idling losses by increasing the load of these transformers, which can be achieved by reducing the number of transformers while changing the configuration of 0.38 kV distribution networks.


Author(s):  
Marijana Jovanović Todorović ◽  
Anton Puškarić

This chapter analyzes plant production from the perspective of development rural areas and it is based on the case study for rural areas on territory of Smederevo. The main goal of this chapter points to the current situation in plant production as one of the most important agricultural activities and that creates the basis for future development. It will be presented data collected from Census of agriculture, yearbooks, and local reports, but also data collected in the field. The authors apply theoretical and practical frame of research based on the case of study, which is oriented on used agricultural land, realized production and yield in period 2013-2017.


Buildings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 222
Author(s):  
Nicola Lolli ◽  
Anne Gunnarshaug Lien ◽  
Øystein Rønneseth

The cost-effectiveness of energy efficiency measures meant to achieve a zero-emission office building is investigated and compared to business as usual energy efficiency measures. The laboratory for zero emission buildings, the ZEB Lab, located in Trondheim, Norway, is an office building designed and built to compensate its lifecycle emissions with the use of a large array of building-integrated photovoltaic panels, pursuing a zero-emissions ambition level. Three design alternatives are investigated by downgrading the building insulation level to the values recommended by the currently enforced Norwegian building code, the byggteknisk forskrift TEK17. A sensitivity analysis of the variation of the installed area of the photovoltaic panels is performed to evaluate if smaller areas give better cost performances. Net present values are calculated by using three scenarios of future increase of electricity price for a time horizon of 20 years. Results show that business as usual solutions give higher net present values. Optimized areas of the photovoltaic panels further increase the net present values of the business as usual solutions in the highest electricity price scenario. The zero-emission ambition level shows a higher net present value than that of the business as usual solutions for a time horizon of at least 36 years.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Sen-Hui Wang ◽  
Hai-Feng Li ◽  
Yong-Jie Zhang ◽  
Zong-Shu Zou

As energy efficiency becomes increasingly important to the steel industry, the iron ore sintering process is attracting more attention since it consumes the second large amount of energy in the iron and steel making processes. The present work aims to propose a prediction model for the iron ore sintering characters. A hybrid ensemble model combined the extreme learning machine (ELM) with an improved AdaBoost.RT algorithm is developed for regression problem. First, the factors that affect solid fuel consumption, gas fuel consumption, burn-through point (BTP), and tumbler index (TI) are ranked according to the attributes weightiness sequence by applying the RReliefF method. Second, the ELM network is selected as an ensemble predictor due to its fast learning speed and good generalization performance. Third, an improved AdaBoost.RT is established to overcome the limitation of conventional AdaBoost.RT by dynamically self-adjusting the threshold value. Then, an ensemble ELM is employed by using the improved AdaBoost.RT for better precision than individual predictor. Finally, this hybrid ensemble model is applied to predict the iron ore sintering characters by production data from No. 4 sintering machine in Baosteel. The results obtained show that the proposed model is effective and feasible for the practical sintering process. In addition, through analyzing the first superior factors, the energy efficiency and sinter quality could be obviously improved.


2018 ◽  
Vol 10 ◽  
pp. 02034 ◽  
Author(s):  
Tomasz Szul

The research aiming to check whether the output of currently installed boilers matches the use requirements together with estimation of their energy efficiency was carried out on a group of 84 single-family residential buildings located in rural areas. Heating and hot water energy needs were calculated for each building in order to determine the use requirements. This enabled verification whether the currently installed boilers match the actual use requirements in the buildings. Based on the calculations it was determined that the designed average boiler output in the group of buildings subject to analysis is 15.7 kW, whereas the mean rated output capacity of boilers installed therein is 25.4 kW. On average, the output capacity of the installed boilers exceeds the use requirements for the buildings by 60%. To calculate the energy efficiency of boilers, the mean annual boiler output capacity use coefficient was determined. For boilers selected on the basis of standard calculations, the mean coefficient is 0.47. For boilers currently in use it is 0.31, less than the above figure. The above calculations show that if boilers were correctly selected in compliance to the building needs, then the average estimated seasonal efficiency of 65% would be feasible. However, in the current state the achievable efficiency is approx. 55%.


Sign in / Sign up

Export Citation Format

Share Document