scholarly journals Assessing the impacts of climate change on dependable flow and potential irrigable area using the SWAT model. The case of Maasin River watershed in Laguna, Philippines

2019 ◽  
Vol 50 (2) ◽  
pp. 88-98
Author(s):  
Lanie A. Alejo ◽  
Victor B. Ella

Seasonal changes in rainfall and temperature brought about by climate change affect water resources availability for rice production areas. There are currently no published applications of the soil and water assessment tool (SWAT) model on quantified effects of climate variability on irrigation service areas for rice production. The study assessed the impacts of climate change on dependable flow and potential irrigable areas of the Maasin River in Laguna, Philippines. Projected variations of rainfall and temperature in 2020 and 2050 developed using PRECIS model based on special report on emission scenarios were employed. The SWAT model was then used to simulate stream flow for each climate change scenario, from which dependable flows were quantified using flow duration analysis. Diversion water requirements for the rice areas in the watershed were determined using CROPWAT. Based on dependable flows and irrigation demand, the potential irrigable areas were estimated. Calibration and validation of the SWAT model showed satisfactory performance in stream flow simulations. The dependable flow in irrigation systems may decline by more than 50% in 2020 and by as much as 97% in 2050, because of seasonal changes in rainfall. In effect, the potential irrigable area may decrease to less than half of the current service area depending on the level of greenhouse gases emissions. SWAT water balance projections suggest surface runoff during wet seasons and increase annual groundwater recharge are possible sources of supplemental irrigation. Provisions of suitable storage reservoir facilities and groundwater development projects will alleviate water scarce conditions. The study demonstrated a technique that may be applied in other irrigation systems in the Philippines and in other countries to quantify the effects of climate change on dependable flows and potential irrigable areas. It can serve as an input to water resources planning and policy recommendations for climate change adaptation and risk reduction strategies. This technique can also be used to assess water resources in other perennial rivers and its viability for the development of new irrigation systems in the Philippines.

2017 ◽  
Author(s):  
Sangchul Lee ◽  
In-Young Yeo ◽  
Ali M. Sadeghi ◽  
Gregory W. McCarty ◽  
Wells D. Hively ◽  
...  

Abstract. Water quality problems in the Chesapeake Bay Watershed (CBW) are expected to exacerbate under climate variability and change. However, climate impacts on agricultural lands and resultant nutrient loads into surface water resources are largely unknown. This study evaluates the impacts of climate variability and change on two adjacent watersheds in the Coastal Plain of the CBW, using Soil and Water Assessment Tool (SWAT) model. We prepared six climate sensitive scenarios to assess the individual effects of variations in CO2 concentration (590 and 850 ppm), precipitation increase (11 and 21 %) and temperature increase (2.9 and 5.0 °C), and considered the predicted climate change scenario using five general circulation models (GCMs) under the Special Report on Emissions Scenarios (SRES) A2 scenario. Using SWAT model simulations from 2001 to 2014, as a baseline scenario, the predicted water and nitrate budgets under climate variability and change scenarios were analyzed at multiple temporal scales. Compared to the baseline scenario, precipitation increase of 21 % and elevated CO2 concentration of 850 ppm significantly increased stream flow and nitrate loads by 50 % and 52 %, respectively, while, temperature increase of 5.0 °C reduced stream flow and nitrate loads by 12 % and 13 %, respectively. Under the climate change scenario, annual stream flow and nitrate loads showed an average increase of nearly 40 %, relative to the baseline scenario. Differences in hydrological responses observed from the two watersheds were primarily attributed to contrasting land use and soil characteristics. The watershed with larger percent croplands indicated increased nitrate yield of 0.52 kg N ha−1 compared to the one with less percent croplands under the climate change scenario, due to increased export of nitrate derived from fertilizer. The watershed dominated by poorly-drained soils showed a lower increase in nitrate yield than one dominated by well-drained soils, due to a high potential of nitrate loss in surface runoff and enhanced denitrification. To mitigate increased nitrate loads potentially caused by climate change, the enhanced implementation of conservation practices would be necessary for this region in the future. These findings assist watershed managers and regulators as they seek to establish effective adaptation strategies to mitigate water quality degradation in this region.


2021 ◽  
Vol 13 (24) ◽  
pp. 14025
Author(s):  
Fazlullah Akhtar ◽  
Usman Khalid Awan ◽  
Christian Borgemeister ◽  
Bernhard Tischbein

The Kabul River Basin (KRB) in Afghanistan is densely inhabited and heterogenic. The basin’s water resources are limited, and climate change is anticipated to worsen this problem. Unfortunately, there is a scarcity of data to measure the impacts of climate change on the KRB’s current water resources. The objective of the current study is to introduce a methodology that couples remote sensing and the Soil and Water Assessment Tool (SWAT) for simulating the impact of climate change on the existing water resources of the KRB. Most of the biophysical parameters required for the SWAT model were derived from remote sensing-based algorithms. The SUFI-2 technique was used for calibrating and validating the SWAT model with streamflow data. The stream-gauge stations for monitoring the streamflow are not only sparse, but the streamflow data are also scarce and limited. Therefore, we selected only the stations that are properly being monitored. During the calibration period, the coefficient of determination (R2) and Nash–Sutcliffe Efficiency (NSE) were 0.75–0.86 and 0.62–0.81, respectively. During the validation period (2011–2013), the NSE and R2 values were 0.52–0.73 and 0.65–0.86, respectively. The validated SWAT model was then used to evaluate the potential impacts of climate change on streamflow. Regional Climate Model (RegCM4-4) was used to extract the data for the climate change scenarios (RCP 4.5 and 8.5) from the CORDEX domain. The results show that streamflow in most tributaries of the KRB would decrease by a maximum of 5% and 8.5% under the RCP 4.5 and 8.5 scenarios, respectively. However, streamflow for the Nawabad tributary would increase by 2.4% and 3.3% under the RCP 4.5 and 8.5 scenarios, respectively. To mitigate the impact of climate change on reduced/increased surface water availability, the SWAT model, when combined with remote sensing data, can be an effective tool to support the sustainable management and strategic planning of water resources. Furthermore, the methodological approach used in this study can be applied in any of the data-scarce regions around the world.


2019 ◽  
Vol 45 (3) ◽  
pp. 323 ◽  
Author(s):  
Xiao-Xia LING ◽  
Zuo-Lin ZHANG ◽  
Jing-Qiu ZHAI ◽  
Shu-Chun YE ◽  
Jian-Liang HUANG

2021 ◽  
Vol 13 (10) ◽  
pp. 2014
Author(s):  
Celina Aznarez ◽  
Patricia Jimeno-Sáez ◽  
Adrián López-Ballesteros ◽  
Juan Pablo Pacheco ◽  
Javier Senent-Aparicio

Assessing how climate change will affect hydrological ecosystem services (HES) provision is necessary for long-term planning and requires local comprehensive climate information. In this study, we used SWAT to evaluate the impacts on four HES, natural hazard protection, erosion control regulation and water supply and flow regulation for the Laguna del Sauce catchment in Uruguay. We used downscaled CMIP-5 global climate models for Representative Concentration Pathways (RCP) 2.6, 4.5 and 8.5 projections. We calibrated and validated our SWAT model for the periods 2005–2009 and 2010–2013 based on remote sensed ET data. Monthly NSE and R2 values for calibration and validation were 0.74, 0.64 and 0.79, 0.84, respectively. Our results suggest that climate change will likely negatively affect the water resources of the Laguna del Sauce catchment, especially in the RCP 8.5 scenario. In all RCP scenarios, the catchment is likely to experience a wetting trend, higher temperatures, seasonality shifts and an increase in extreme precipitation events, particularly in frequency and magnitude. This will likely affect water quality provision through runoff and sediment yield inputs, reducing the erosion control HES and likely aggravating eutrophication. Although the amount of water will increase, changes to the hydrological cycle might jeopardize the stability of freshwater supplies and HES on which many people in the south-eastern region of Uruguay depend. Despite streamflow monitoring capacities need to be enhanced to reduce the uncertainty of model results, our findings provide valuable insights for water resources planning in the study area. Hence, water management and monitoring capacities need to be enhanced to reduce the potential negative climate change impacts on HES. The methodological approach presented here, based on satellite ET data can be replicated and adapted to any other place in the world since we employed open-access software and remote sensing data for all the phases of hydrological modelling and HES provision assessment.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1313
Author(s):  
George Akoko ◽  
Tu Hoang Le ◽  
Takashi Gomi ◽  
Tasuku Kato

The soil and water assessment tool (SWAT) is a well-known hydrological modeling tool that has been applied in various hydrologic and environmental simulations. A total of 206 studies over a 15-year period (2005–2019) were identified from various peer-reviewed scientific journals listed on the SWAT website database, which is supported by the Centre for Agricultural and Rural Development (CARD). These studies were categorized into five areas, namely applications considering: water resources and streamflow, erosion and sedimentation, land-use management and agricultural-related contexts, climate-change contexts, and model parameterization and dataset inputs. Water resources studies were applied to understand hydrological processes and responses in various river basins. Land-use and agriculture-related context studies mainly analyzed impacts and mitigation measures on the environment and provided insights into better environmental management. Erosion and sedimentation studies using the SWAT model were done to quantify sediment yield and evaluate soil conservation measures. Climate-change context studies mainly demonstrated streamflow sensitivity to weather changes. The model parameterization studies highlighted parameter selection in streamflow analysis, model improvements, and basin scale calibrations. Dataset inputs mainly compared simulations with rain-gauge and global rainfall data sources. The challenges and advantages of the SWAT model’s applications, which range from data availability and prediction uncertainties to the model’s capability in various applications, are highlighted. Discussions on considerations for future simulations such as data sharing, and potential for better future analysis are also highlighted. Increased efforts in local data availability and a multidimensional approach in future simulations are recommended.


Sign in / Sign up

Export Citation Format

Share Document