scholarly journals Lower Extremity Neuromuscular Control Immediately After Fatiguing Hip-Abduction Exercise

2011 ◽  
Vol 46 (6) ◽  
pp. 607-614 ◽  
Author(s):  
Kelly L. McMullen ◽  
Nicole L. Cosby ◽  
Jay Hertel ◽  
Christopher D. Ingersoll ◽  
Joseph M. Hart

Context: Fatigue of the gluteus medius (GMed) muscle might be associated with decreases in postural control due to insufficient pelvic stabilization. Men and women might have different muscular recruitment patterns in response to GMed fatigue. Objective: To compare postural control and quality of movement between men and women after a fatiguing hip-abduction exercise. Design: Descriptive laboratory study. Setting: Controlled laboratory. Patients or Other Participants: Eighteen men (age = 22 ± 3.64 years, height = 183.37 ± 8.30 cm, mass = 87.02 ±12.53 kg) and 18 women (age = 22 ± 3.14, height = 167.65 ± 5.80 cm, mass = 66.64 ± 10.49 kg) with no history of low back or lower extremity injury participated in our study. Intervention(s): Participants followed a fatiguing protocol that involved a side-lying hip-abduction exercise performed until a 15% shift in electromyographic median frequency of the GMed was reached. Main Outcome Measure(s): Baseline and postfatigue measurements of single-leg static balance, dynamic balance, and quality of movement assessed with center-of-pressure measurements, the Star Excursion Balance Test, and lateral step-down test, respectively, were recorded for the dominant lower extremity (as identified by the participant). Results: We observed no differences in balance deficits between sexes (P > .05); however, we found main effects for time with all of our postfatigue outcome measures (P ≤ .05). Conclusions: Our findings suggest that postural control and quality of movement were affected negatively after a GMed-fatiguing exercise. At similar levels of local muscle fatigue, men and women had similar measurements of postural control.

2018 ◽  
Vol 53 (11) ◽  
pp. 1071-1081 ◽  
Author(s):  
Cara L. Lewis ◽  
Hanna D. Foley ◽  
Theresa S. Lee ◽  
Justin W. Berry

ContextWeakness or decreased activation of the hip abductors and external rotators has been associated with lower extremity injury, especially in females. Resisted side stepping is commonly used to address hip weakness. Whereas multiple variations of this exercise are used clinically, few data exist regarding which variations to select.ObjectiveTo investigate differences in muscle-activation and movement patterns and determine kinematic and limb-specific differences between men and women during resisted side stepping with 3 resistive-band positions.DesignControlled laboratory study.SettingLaboratory.Patients or Other ParticipantsA total of 22 healthy adults (11 men, 11 women; age = 22.8 ± 3.0 years, height = 171.6 ± 10.7 cm, mass = 68.5 ± 11.8 kg).Intervention(s)Participants side stepped with the resistive band at 3 locations (knees, ankles, feet).Main Outcome Measure(s)We collected surface electromyography of the gluteus maximus, gluteus medius, and tensor fascia lata (TFL) for the moving and stance limbs during the concentric and eccentric phases. We also measured trunk inclination, hip and knee flexion, and hip-abduction excursion.ResultsHip-abductor activity was higher in women than in men (P ≤ .04). The pattern of TFL activity in the stance limb differed by sex. Women performed the exercise in greater forward trunk inclination (P = .009) and had greater hip excursion (P = .003). Gluteus maximus and medius activity increased when the band was moved from the knees to the ankles and from the ankles to the feet, whereas TFL activity increased only when the band was moved from the knees to the ankles. Findings were similar for both the stance and moving limbs, but the magnitudes of the changes differed.ConclusionsCompared with placing the band around the ankles, placing the band around the feet for resisted side stepping elicited more activity in the gluteal muscles without increasing TFL activity. This band placement is most appropriate when the therapeutic goal is to activate the muscles that resist hip adduction and internal rotation.


2020 ◽  
Vol 24 (3) ◽  
pp. 135-141
Author(s):  
Rachael Greenwell ◽  
Margaret Wilson ◽  
Jennifer L. Deckert ◽  
Meghan Critchley ◽  
Michaela Keener ◽  
...  

The purpose of this study was to determine what differences exist when performing grand plié with and without the barre. Differences in center of pressure (COP) sway, trunk kinematics, and lower extremity kinematics were used in this analysis for both first (P1) and fifth positions (P5). It was hypothesized that use of the barre would result in decreased COP sway, but increased asymmetries in trunk and lower extremity kinematics would be seen compared with the same movements performed without the barre in both positions. Sixteen collegiate dancers (1 male, 15 female) performed three trials of grand plié in P1 and P5 (right leg crossed in front) with or without the barre, for a total of 12 trials. For the barre condition (BC), participants demonstrated less time to complete grand plié, slightly less depth in grand plié, and decreased anterior-posterior (AP) sway compared to the without barre condition (WBC). The BC condition showed increased peak left trunk rotation, right knee flexion, decreased right and left peak hip flexion, and increased right hip abduction in both P1 and P5. Comparing P1 to P5, there was decreased AP sway, decreased peak left trunk rotation, decreased peak right and left hip flexion, increased left hip abduction, and decreased right knee flexion in both BC and WBC conditions. For the BC, there was increased right hip abduction in P1 compared to P5. Our results indicate that while use of the barre provides proprioceptive information, which helps dancers to control balance and learn a motor control strategy, grand plié should also be taught without the barre to challenge the dancer's balance control with different movement patterns in space.


2014 ◽  
Vol 49 (5) ◽  
pp. 617-623 ◽  
Author(s):  
Alon Rabin ◽  
Zvi Kozol ◽  
Elad Spitzer ◽  
Aharon Finestone

Context: Lower extremity movement patterns have been implicated as a risk factor for various knee disorders. Ankle-dorsiflexion (DF) range of motion (ROM) has previously been associated with a faulty movement pattern among healthy female participants. Objective: To determine the association between ankle DF ROM and the quality of lower extremity movement during the lateral step-down test among healthy male participants. Design: Cross-sectional study. Setting: Training facility of the Israel Defense Forces. Patients or Other Participants: Fifty-five healthy male Israeli military recruits (age = 19.7 ± 1.1 years, height = 175.4 ± 6.4 cm, mass = 72.0 ± 7.6 kg). Intervention(s): Dorsiflexion ROM was measured in weight-bearing and non–weight-bearing conditions using a fluid-filled inclinometer and a universal goniometer, respectively. Lower extremity movement pattern was assessed visually using the lateral step-down test and classified categorically as good or moderate. All measurements were performed bilaterally. Main Outcome Measure(s): Weight-bearing and non–weight-bearing DF ROM were more limited among participants with moderate quality of movement than in those with good quality of movement on the dominant side (P = .01 and P = .02 for weight-bearing and non–weight-bearing DF, respectively). Non–weight-bearing DF demonstrated a trend toward a decreased range among participants with moderate compared with participants with good quality of movement on the nondominant side (P = .03 [adjusted P = .025]). Weight-bearing DF was not different between participants with good and moderate movement patterns on the nondominant side (P = .10). Weight-bearing and non–weight-bearing ankle DF ROM correlated significantly with the quality of movement on both sides (P < .01 and P < .05 on the dominant and nondominant side, respectively). Conclusions: Ankle DF ROM was associated with quality of movement among healthy male participants. The association seemed weaker in males than in females.


2019 ◽  
Vol 47 (7) ◽  
pp. 1713-1721 ◽  
Author(s):  
Cedric De Blaiser ◽  
Roel De Ridder ◽  
Tine Willems ◽  
Luc Vanden Bossche ◽  
Lieven Danneels ◽  
...  

Background: Core stability has been suggested to influence lower extremity functioning and might contribute to the development of lower extremity overuse injuries. However, prospective studies to investigate this relationship are limited. Purpose: To research the role of different components of core stability as risk factors for the development of lower extremity overuse injuries. Study Design: Cohort study; Level of evidence, 2. Methods: A total of 142 first-year physical education students participated in this study. They were tested in 2015 and were prospectively followed for 1.5 years by means of a multilevel injury registration method. Three participants were excluded owing to physical complaints during testing. As such, 139 participants were included in the statistical analysis. At baseline, dynamic postural control, isometric core and hip muscle strength, core muscle endurance, core neuromuscular control and proprioception, and functional movement were measured for all participants. Competing risk regression analyses were performed to identify significant contributors to the development of lower extremity overuse injuries. Results: During the follow-up period, 34 (24%) of the 139 participants developed a lower extremity overuse injury. Significant predictive effects for an overuse injury were found for an increased side-by-side difference in dynamic postural control ( P = .038), decreased isometric hip extension:flexion strength ratio ( P = .046), and decreased abdominal core muscle endurance ( P = .032). Conclusion: This study identified measures for dynamic postural control, core muscle strength, and core muscle endurance as significant risk factors for the development of overuse injuries after statistical model building. However, core neuromuscular control and proprioception and functional movement might not allow clinicians to identify patients at risk. These accessible, reliable screening tools could be used in clinical practice with regard to screening and injury prevention for overuse injuries. Injury prediction based on this model needs to be done with caution given the low relative predictive accuracy (53%).


Entropy ◽  
2019 ◽  
Vol 21 (6) ◽  
pp. 614 ◽  
Author(s):  
Felix Wachholz ◽  
Tove Kockum ◽  
Thomas Haid ◽  
Peter Federolf

Sample entropy (SaEn) applied on center-of-pressure (COP) data provides a measure for the regularity of human postural control. Two mechanisms could contribute to altered COP regularity: first, an altered temporal structure (temporal regularity) of postural movements (H1); or second, altered coordination between segment movements (coordinative complexity; H2). The current study used rapid, voluntary head-shaking to perturb the postural control system, thus producing changes in COP regularity, to then assess the two hypotheses. Sixteen healthy participants (age 26.5 ± 3.5; seven females), whose postural movements were tracked via 39 reflective markers, performed trials in which they first stood quietly on a force plate for 30 s, then shook their head for 10 s, finally stood quietly for another 90 s. A principal component analysis (PCA) performed on the kinematic data extracted the main postural movement components. Temporal regularity was determined by calculating SaEn on the time series of these movement components. Coordinative complexity was determined by assessing the relative explained variance of the first five components. H1 was supported, but H2 was not. These results suggest that moderate perturbations of the postural control system produce altered temporal structures of the main postural movement components, but do not necessarily change the coordinative structure of intersegment movements.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Michela Persiani ◽  
Alessandro Piras ◽  
Salvatore Squatrito ◽  
Milena Raffi

During self-motion, the spatial and temporal properties of the optic flow input directly influence the body sway. Men and women have anatomical and biomechanical differences that influence the postural control during visual stimulation. Given that recent findings suggest a peculiar role of each leg in the postural control of the two genders, we investigated whether the body sway during optic flow perturbances is lateralized and whether anteroposterior and mediolateral components of specific center of pressure (COP) parameters of the right and left legs differ, reexamining a previous experiment (Raffi et al. (2014)) performed with two, side-by-side, force plates. Experiments were performed on 24 right-handed and right-footed young subjects. We analyzed five measures related to the COP of each foot and global data: anteroposterior and mediolateral range of oscillation, anteroposterior and mediolateral COP velocity, and sway area. Results showed that men consistently had larger COP parameters than women. The values of the COP parameters were correlated between the two feet only in the mediolateral axis of women. These findings suggest that optic flow stimulation causes asymmetry in postural balance and different lateralization of postural controls in men and women.


Author(s):  
Luis López-González ◽  
Deborah Falla ◽  
Irene Lázaro-Navas ◽  
Cristina Lorenzo-Sánchez-Aguilera ◽  
Isabel Rodríguez-Costa ◽  
...  

This study aimed to compare the effects of dry needling (DN) versus placebo DN applied to the peroneus longus (PL) and tibialis anterior (TA) on neuromuscular control and static postural control in basketball players with chronic ankle instability (CAI). A single-blinded randomized controlled trial was conducted. Thirty-two male and female basketball players with CAI were randomly assigned to receive either DN (n = 16) or placebo DN (n = 16). Pre-activation amplitudes of PL and TA were assessed with surface electromyography (EMG) during a dynamic landing test. Center of pressure (CoP) displacement and sway variability in anterior-posterior (AP) and medio-lateral (ML) directions were measured with a force platform during a single leg balance test (SLBT). Measures were obtained prior to a single DN intervention, immediately after, at 48 h, and 1 month after. The DN group displayed a significant increase in PL and TA pre-activation values, which were maintained 1 month later. Significant reductions in the ML and AP displacements and sway variability of CoP were found for the DN group. These results showed improvements in feedback/feed-forward strategies following DN, including enhanced neuromuscular control and static postural control, with the potential to become a convenient and accessible preventive treatment in CAI subjects.


2020 ◽  
Author(s):  
Hao-Yuan Hsiao ◽  
Vicki L Gray ◽  
James Borrelli ◽  
Mark W Rogers

Abstract Background: stroke is a leading cause of disability with associated hemiparesis resulting in difficulty bearing and transferring weight on to the paretic limb. Difficulties in weight bearing and weight transfer may result in impaired mobility and balance, increased fall risk, and decreased community engagement. Despite considerable efforts aimed at improving weight transfer after stroke, impairments in its neuromotor and biomechanical control remain poorly understood. In the present study, a novel experimental paradigm was used to characterize differences in weight transfer biomechanics in individuals with chronic stroke versus able-bodied controls. Methods: fifteen participants with stroke and fifteen age-matched able-bodied controls participated in the study. Participants stood with one foot on each of two custom built platforms. One of the platforms dropped 4.3 cm vertically to induce lateral weight transfer and weight bearing. Trials involving a drop of the platform beneath the paretic lower extremity (non-dominant limb for control) were included in the analyses. Paretic lower extremity joint kinematics, vertical ground reaction forces, and center of pressure velocity were measured. All participants completed the clinical Step Test and Four-Square Step Test. Results: reduced paretic ankle, knee, and hip joint angular displacement and velocity, delayed ankle and knee inter-joint timing, increased downward displacement of center of mass, and increased center of pressure (COP) velocity stabilization time were exhibited in the stroke group compared to the control group. In addition, paretic COP velocity stabilization time during induced weight transfer predicted Four-Square Step Test scores in individuals post-stroke. Conclusions: the induced weight transfer approach identified stroke-related abnormalities in the control of weight transfer towards the paretic limb side compared to controls. Decreased joint flexion of the paretic ankle and knee, altered inter-joint timing, and increased COP stabilization times may reflect difficulties in neuromuscular control during weight transfer following stroke. Future work will investigate the potential of improving functional weight transfer through induced weight transfer training exercise.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Chia-Ming Chang ◽  
Chon-Haw Tsai ◽  
Ming-Kuei Lu ◽  
Hsin-Chun Tseng ◽  
Grace Lu ◽  
...  

Abstract Background Whole-body vibration (WBV) training can provoke reactive muscle response and thus exert beneficial effects in various neurological patients. This study aimed to investigate the muscles activation and acceleration transmissibility of the lower extremity to try to understand the neuromuscular control in the Parkinson’s disease (PD) patients under different conditions of the WBV training, including position and frequency. Methods Sixteen PD patients and sixteen controls were enrolled. Each of them would receive two WBV training sessions with 3 and 20 Hz mechanical vibration in separated days. In each session, they were asked to stand on the WBV machine with straight and then bended knee joint positions, while the vibration stimulation was delivered or not. The electromyographic (EMG) signals and the segmental acceleration from the lower extremity were recorded and processed. The amplitude, co-contraction indexes (CCI), and normalized median frequency slope (NMFS) from the EMG signals, and the acceleration transmissibility were calculated. Results The results showed larger rectus femoris (RF) amplitudes under 3 Hz vibration than those in 20 Hz and no vibration conditions; larger tibialis anterior (TA) in 20 Hz than in no vibration; larger gastrocnemius (GAS) in 20 Hz than in 3 Hz and no vibration. These results indicated that different vibration frequencies mainly induced reactive responses in different muscles, by showing higher activation of the knee extensors in 3 Hz and of the lower leg muscles in 20 Hz condition, respectively. Comparing between groups, the PD patients reacted to the WBV stimulation by showing larger muscle activations in hamstring (HAM), TA and GAS, and smaller CCI in thigh than those in the controls. In bended knee, it demonstrated a higher RF amplitude and a steeper NMFS but smaller HAM activations than in straight knee position. The higher acceleration transmissibility was found in the control group, in the straight knee position and in the 3 Hz vibration conditions. Conclusion The PD patients demonstrated altered neuromuscular control compared with the controls in responding to the WBV stimulations, with generally higher EMG amplitude of lower extremity muscles. For designing WBV strengthening protocol in the PD population, the 3 Hz with straight or flexed knee protocol was recommended to recruit more thigh muscles; the bended knee position with 20 Hz vibration was for the shank muscles.


Sign in / Sign up

Export Citation Format

Share Document