scholarly journals Near-Infrared Light Therapy to Attenuate Strength Loss After Strenuous Resistance Exercise

2015 ◽  
Vol 50 (1) ◽  
pp. 45-50 ◽  
Author(s):  
Kelly A. Larkin-Kaiser ◽  
Evangelos Christou ◽  
Mark Tillman ◽  
Steven George ◽  
Paul A. Borsa

Context: Near-infrared (NIR) light therapy is purported to act as an ergogenic aid by enhancing the contractile function of skeletal muscle. Improving muscle function is a new avenue for research in the area of laser therapy; however, very few researchers have examined the ergogenic effects of NIR light therapy and the influence it may have on the recovery process during rehabilitation. Objective: To evaluate the ergogenic effect of NIR light therapy on skeletal muscle function. Design: Crossover study. Setting: Controlled laboratory. Patients or Other Participants: Thirty-nine healthy men (n = 21) and women (n = 18; age = 20.0 ± 0.2 years, height = 169 ± 2 cm, mass = 68.4 ± 1.8 kg, body mass index = 23.8 ± 0.4 kg/m2). Intervention(s): Each participant received active and sham treatments on the biceps brachii muscle on 2 separate days. The order of treatment was randomized. A class 4 laser with a cumulative dose of 360 J was used for the active treatment. After receiving the treatment on each day, participants completed an elbow-flexion resistance-exercise protocol. Main Outcome Measure(s): The dependent variables were elbow range of motion, muscle point tenderness, and strength (peak torque). Analysis of variance with repeated measures was used to assess changes in these measures between treatments at baseline and at follow-up, 48 hours postexercise. Additionally, immediate strength loss postexercise was compared between treatments using a paired t test. Results: Preexercise to postexercise strength loss for the active laser treatment, although small, was less than with the sham treatment (P = .05). Conclusions: Applied to skeletal muscle before resistance exercise, NIR light therapy effectively attenuated strength loss. Therefore, NIR light therapy may be a beneficial, noninvasive modality for improving muscle function during rehabilitation after musculoskeletal injury. However, future studies using higher treatment doses are warranted.

2020 ◽  
Author(s):  
Alex Stafford ◽  
Dowon Ahn ◽  
Emily Raulerson ◽  
Kun-You Chung ◽  
Kaihong Sun ◽  
...  

Driving rapid polymerizations with visible to near-infrared (NIR) light will enable nascent technologies in the emerging fields of bio- and composite-printing. However, current photopolymerization strategies are limited by long reaction times, high light intensities, and/or large catalyst loadings. Improving efficiency remains elusive without a comprehensive, mechanistic evaluation of photocatalysis to better understand how composition relates to polymerization metrics. With this objective in mind, a series of methine- and aza-bridged boron dipyrromethene (BODIPY) derivatives were synthesized and systematically characterized to elucidate key structure-property relationships that facilitate efficient photopolymerization driven by visible to NIR light. For both BODIPY scaffolds, halogenation was shown as a general method to increase polymerization rate, quantitatively characterized using a custom real-time infrared spectroscopy setup. Furthermore, a combination of steady-state emission quenching experiments, electronic structure calculations, and ultrafast transient absorption revealed that efficient intersystem crossing to the lowest excited triplet state upon halogenation was a key mechanistic step to achieving rapid photopolymerization reactions. Unprecedented polymerization rates were achieved with extremely low light intensities (< 1 mW/cm<sup>2</sup>) and catalyst loadings (< 50 μM), exemplified by reaction completion within 60 seconds of irradiation using green, red, and NIR light-emitting diodes.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Mary K. Popp ◽  
Imane Oubou ◽  
Colin Shepherd ◽  
Zachary Nager ◽  
Courtney Anderson ◽  
...  

Photothermal therapy (PTT) treatments have shown strong potential in treating tumors through their ability to target destructive heat preferentially to tumor regions. In this paper we demonstrate that PTT in a murine melanoma model using gold nanorods (GNRs) and near-infrared (NIR) light decreases tumor volume and increases animal survival to an extent that is comparable to the current generation of melanoma drugs. GNRs, in particular, have shown a strong ability to reach ablative temperatures quickly in tumors when exposed to NIR light. The current research tests the efficacy of GNRs PTT in a difficult and fast growing murine melanoma model using a NIR light-emitting diode (LED) light source. LED light sources in the NIR spectrum could provide a safer and more practical approach to photothermal therapy than lasers. We also show that the LED light source can effectively and quickly heatin vitroandin vivomodels to ablative temperatures when combined with GNRs. We anticipate that this approach could have significant implications for human cancer therapy.


2016 ◽  
Vol 311 (2) ◽  
pp. E293-E301 ◽  
Author(s):  
Laura A. A. Gilliam ◽  
Daniel S. Lark ◽  
Lauren R. Reese ◽  
Maria J. Torres ◽  
Terence E. Ryan ◽  
...  

The loss of strength in combination with constant fatigue is a burden on cancer patients undergoing chemotherapy. Doxorubicin, a standard chemotherapy drug used in the clinic, causes skeletal muscle dysfunction and increases mitochondrial H2O2. We hypothesized that the combined effect of cancer and chemotherapy in an immunocompetent breast cancer mouse model (E0771) would compromise skeletal muscle mitochondrial respiratory function, leading to an increase in H2O2-emitting potential and impaired muscle function. Here, we demonstrate that cancer chemotherapy decreases mitochondrial respiratory capacity supported with complex I (pyruvate/glutamate/malate) and complex II (succinate) substrates. Mitochondrial H2O2-emitting potential was altered in skeletal muscle, and global protein oxidation was elevated with cancer chemotherapy. Muscle contractile function was impaired following exposure to cancer chemotherapy. Genetically engineering the overexpression of catalase in mitochondria of muscle attenuated mitochondrial H2O2 emission and protein oxidation, preserving mitochondrial and whole muscle function despite cancer chemotherapy. These findings suggest mitochondrial oxidants as a mediator of cancer chemotherapy-induced skeletal muscle dysfunction.


Vascular ◽  
2021 ◽  
pp. 170853812110514
Author(s):  
Nail Kahraman ◽  
Gündüz Yümün ◽  
Deniz Demir ◽  
Kadir K Özsin ◽  
Sadık A Sünbül ◽  
...  

Objectives Varicose veins that cannot be seen with the naked eye can be easily detected with Near Infrared (NIR) light. With a minimally invasive procedure performed with NIR light guided, the need for reoperation is reduced, while optimal treatment of venous insufficiency and symptoms is provided. In this study, the detection of residual varicose veins after varicose vein surgery using NIR light and the results of treatment of sclerotherapy were investigated. Methods In this retrospective study, treatment and clinical outcomes of patients’ who underwent NIR light-guided foam sclerotherapy for Clinical-Etiology-Anatomy-Pathophysiology (CEAP) (C1, C2) stage residual varicose veins after surgical varicose treatment between 2014 and 2017 were examined. Data of patients who underwent foam sclerotherapy with NIR light were collected and analyzed. Results A total of 151 patients and 171 lower extremity varicose veins were treated with surgery. 55 (35.7%) of the patients were male, and 96 (62.3%) were female. Their age ranges from 20 to 64, with an average age of 45.38. 4 (2.6%) of the patients had phlebectomy. 137 of patients (90.7%) had ligation of perforated veins, phlebectomy, and great saphenous vein (GSV) stripping, 10 of patients (6.6%) had GSV stripping, perforating vein ligation, phlebectomy, and small saphenous vein (SSV) surgery. No residual leakage was observed in the controls of GSV, SSV, and perforating veins by duplex ultrasonography (DUS). In the first month after varicose surgery, an average of 1.64 ± 1.05 sessions of sclerotherapy was applied to patients with CEAP C1, C2 stage residual varicose veins. 70 patients had one session of sclerotherapy, 37 patients had two sessions of sclerotherapy, 20 patients had three sessions of sclerotherapy, and 11 patients had four sessions of sclerotherapy administrated. The need for complementary therapy was required for all female patients; 13 of the male patients did not require complementary sclerotherapy. While single-session sclerotherapy was applied to most male patients (32 (58.18%), 10 (18.18%) patients received two sclerotherapy sessions. After completing sclerotherapy, 7 (4.63%) patients had superficial venous thrombosis, and 13 (8.60%) patients had hyperpigmentation. Conclusion Surgical treatment is a safe and effective technique in venous insufficiency. Nevertheless, residual varicose veins may remain, and these can be detected noninvasively with NIR light. Foam sclerotherapy with NIR light is a minimally invasive and safe treatment method for small residual varicose veins after the operation. We think that sclerotherapy with NIR light as a complementary treatment is a practical, reliable, and demanding treatment for clinical improvement, especially in female patients.


2018 ◽  
Vol 6 (21) ◽  
pp. 3531-3540 ◽  
Author(s):  
Jun Xiang ◽  
Xia Tong ◽  
Feng Shi ◽  
Qiang Yan ◽  
Bing Yu ◽  
...  

The preparation of a new near-infrared (NIR) light-responsive nanocarrier for controlled drug release is demonstrated.


Author(s):  
Satoshi Shimawaki ◽  
Izumi Urakami

Examination of vascular endothelial function can help infer atherosclerosis progression. This study investigated whether vascular visualization by near-infrared (NIR) light can detect vasodilatation after cuff pressure release of the upper arm and what the correlation is between the brightness decrease ratio (R1) corresponding to vasodilation and the reactive hyperemia index (RHI). We obtained finger vascular images of 53 male subjects by photographing NIR light (wavelength 850 nm) transmitted through the middle phalanx of the middle finger with a charge-coupled device camera. The upper arm was compressed for 10 min using a cuff (200 mmHg), and vascular images before and after cuff compression release were obtained. We analyzed the finger vascular images by NIR light and digital pulse volume using endothelial peripheral arterial tonometry (Endo-PAT). We also calculated the average brightness of each vascular image. Using only the data of the ischemic finger, R1 was defined using the average brightness just before cuff release and the minimum average brightness after cuff release. The brightness of vascular images of the ischemic finger decreased after cuff release probably because of vasodilation. We found significant correlation between R1 and the RHI (r = 0.52; P < 0.001). R1 in the lowest RHI quartile was significantly smaller compared to the highest and second-highest RHI quartiles (P < 0.05). Vascular visualization by NIR light can detect vasodilation after cuff release. This is significantly correlated with the RHI on Endo-PAT.


2016 ◽  
Vol 121 (5) ◽  
pp. 1047-1052 ◽  
Author(s):  
Cory W. Baumann ◽  
Dongmin Kwak ◽  
Haiming M. Liu ◽  
LaDora V. Thompson

With advancing age, skeletal muscle function declines as a result of strength loss. These strength deficits are largely due to reductions in muscle size (i.e., quantity) and its intrinsic force-producing capacity (i.e., quality). Age-induced reductions in skeletal muscle quantity and quality can be the consequence of several factors, including accumulation of reactive oxygen and nitrogen species (ROS/RNS), also known as oxidative stress. Therefore, the purpose of this mini-review is to highlight the published literature that has demonstrated links between aging, oxidative stress, and skeletal muscle quantity or quality. In particular, we focused on how oxidative stress has the potential to reduce muscle quantity by shifting protein balance in a deficit, and muscle quality by impairing activation at the neuromuscular junction, excitation-contraction (EC) coupling at the ryanodine receptor (RyR), and cross-bridge cycling within the myofibrillar apparatus. Of these, muscle weakness due to EC coupling failure mediated by RyR dysfunction via oxidation and/or nitrosylation appears to be the strongest candidate based on the publications reviewed. However, it is clear that age-associated oxidative stress has the ability to alter strength through several mechanisms and at various locations of the muscle fiber.


2018 ◽  
Vol 6 (9) ◽  
pp. 2460-2471 ◽  
Author(s):  
Xiuhua Wang ◽  
Lei Tan ◽  
Xiangmei Liu ◽  
Zhenduo Cui ◽  
Xianjin Yang ◽  
...  

Near infrared (NIR) light induced photodynamic antibacterial therapy (PDAT) is a promising antibacterial technique in rapidin situdisinfection of bacterially infected artificial implants due to its penetration ability into tissues.


2013 ◽  
Vol 48 (1) ◽  
pp. 57-67 ◽  
Author(s):  
Paul A. Borsa ◽  
Kelly A. Larkin ◽  
Jerry M. True

Context Recently, researchers have shown that phototherapy administered to skeletal muscle immediately before resistance exercise can enhance contractile function, prevent exercise-induced cell damage, and improve postexercise recovery of strength and function. Objective To critically evaluate original research addressing the ability of phototherapeutic devices, such as lasers and light-emitting diodes (LEDs), to enhance skeletal muscle contractile function, reduce exercise-induced muscle fatigue, and facilitate postexercise recovery. Data Sources We searched the electronic databases PubMed, SPORTDiscus, Web of Science, Scopus, and Rehabilitation & Physical Medicine without date limitations for the following key words: laser therapy, phototherapy, fatigue, exercise, circulation, microcirculation, and photobiomodulation. Study Selection Eligible studies had to be original research published in English as full papers, involve human participants, and receive a minimum score of 7 out of 10 on the Physiotherapy Evidence Database (PEDro) scale. Data Extraction Data of interest included elapsed time to fatigue, total number of repetitions to fatigue, total work performed, maximal voluntary isometric contraction (strength), electromyographic activity, and postexercise biomarker levels. We recorded the PEDro scores, beam characteristics, and treatment variables and calculated the therapeutic outcomes and effect sizes for the data sets. Data Synthesis In total, 12 randomized controlled trials met the inclusion criteria. However, we excluded data from 2 studies, leaving 32 data sets from 10 studies. Twenty-four of the 32 data sets contained differences between active phototherapy and sham (placebo-control) treatment conditions for the various outcome measures. Exposing skeletal muscle to single-diode and multidiode laser or multidiode LED therapy was shown to positively affect physical performance by delaying the onset of fatigue, reducing the fatigue response, improving postexercise recovery, and protecting cells from exercise-induced damage. Conclusions Phototherapy administered before resistance exercise consistently has been found to provide ergogenic and prophylactic benefits to skeletal muscle.


Nanomedicine ◽  
2019 ◽  
Vol 14 (16) ◽  
pp. 2189-2207
Author(s):  
Yiming Yu ◽  
Li Zhang ◽  
Miao Wang ◽  
Zhe Yang ◽  
Leping Lin ◽  
...  

Aim: To develop a H2O2/near-infrared (NIR) laser light-responsive nanoplatform (manganese-doped Prussian blue@polypyrrole [MnPB@PPy]) for synergistic chemo/photothermal cancer theranostics. Materials & methods: Doxorubicin (DOX) was loaded onto the surface of polypyrrole shells. The in vitro and in vivo MRI performance and anticancer effects of these nanoparticles (NPs) were evaluated. Results: The MnPB@PPy NPs could not only generate heat under NIR laser irradiation for cancer photothermal therapy but also act as an excellent MRI contrast agent. The loaded DOX could be triggered to release by both NIR light and H2O2 to enhance synergistic therapeutic efficacy. The antitumor effects were confirmed by in vitro cellular cytotoxicity assays and in vivo treatment in a xenograft tumor model. Conclusion: The designed H2O2/NIR light-responsive MnPB@PPy-DOX NPs hold great potential for future biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document