scholarly journals Refraction seismic velocity analyses from multichannel seismic data acquired during Expedition ARA04C on the IBRV Araon in the Beaufort Sea

2014 ◽  
Author(s):  
M Riedel ◽  
J K Hong ◽  
Y K Jin ◽  
H S Kim

1977 ◽  
Vol 14 (1) ◽  
pp. 117-127 ◽  
Author(s):  
W. J. Scott ◽  
J. A. Hunter

This paper reports the results of some recent geophysical experiments carried out in the Arctic with a variety of methods. In the Beaufort Sea, seismic refraction profiles obtained with both source and receivers on the seabottom indicate the presence of discontinuous near-bottom high-velocity (4200 m/s) material interpreted to be presently aggrading permafrost. Spring-time resistivity soundings taken through the ice in Kugmallit Bay, Beaufort Sea, show the top of permafrost at about 50 m below the bottom. Even for 5-km spreads, the base of permafrost was not observed.Off the southeast coast of Melville Island, refraction seismic profiles shot on the seabottom and resistivity soundings made through summer ice yielded data which correlate with known sub-bottom geology, but which gave no clear indication of either presence or absence of permafrost.Seismic and resistivity measurements made at a number of control sites in the Arctic Islands yielded typical velocities of 3500 m/s and resistivities of 1 × 106 ohm-m for ice-saturated sands. Some correlation was observed between seismic velocity and moisture contents in the range from 10% to 40%.Seismic and resistivity results in IOL Lake at the Involuted Hill test site, Tuktoyaktuk Peninsula, suggest the absence of permafrost under some parts of the lake bottom. On the hill itself, seismic up-hole shooting and VLF resistivity profiling give interpretations of ice distribution which correlate well with drill control. Gamma-gamma logs taken in some of the drill holes correlate well with ice content logged during drilling.





1971 ◽  
Vol 10 (58) ◽  
pp. 113-119 ◽  
Author(s):  
R.N. Bose ◽  
N.P. Dutta ◽  
S.M. Lahiri

AbstractRefraction seismic studies conducted on the Zemu Glacier in Sikkim at an altitude of 4 570 m (15 000 ft), indicate that the thickness of the glacier ice varies from about 125 m at the edge of the glacier to about 300 m at the centre. The bedrock section across the glacial valley as drawn on the basis of the seismic data corroborates the fact that the glacier has undergone considerable lateral shrinkage. The observed seismic velocity in the glacier ice, which ranges between 3 500 m/s and 3 700 m/s is in good agreement with the values obtained on glaciers in various parts of the world.



1971 ◽  
Vol 10 (58) ◽  
pp. 113-119 ◽  
Author(s):  
R.N. Bose ◽  
N.P. Dutta ◽  
S.M. Lahiri

Refraction seismic studies conducted on the Zemu Glacier in Sikkim at an altitude of 4 570 m (15 000 ft), indicate that the thickness of the glacier ice varies from about 125 m at the edge of the glacier to about 300 m at the centre. The bedrock section across the glacial valley as drawn on the basis of the seismic data corroborates the fact that the glacier has undergone considerable lateral shrinkage. The observed seismic velocity in the glacier ice, which ranges between 3 500 m/s and 3 700 m/s is in good agreement with the values obtained on glaciers in various parts of the world.



1999 ◽  
Vol 314 (1-3) ◽  
pp. 269-283 ◽  
Author(s):  
Florian Bleibinhaus ◽  
Thies Beilecke ◽  
Kurt Bram ◽  
Helmut Gebrande




Author(s):  
Nina Skaarup ◽  
James A. Chalmers

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Skaarup, N., & Chalmers, J. A. (1998). A possible new hydrocarbon play, offshore central West Greenland. Geology of Greenland Survey Bulletin, 180, 28-30. https://doi.org/10.34194/ggub.v180.5082 _______________ The discovery of extensive seeps of crude oil onshore central West Greenland (Christiansen et al. 1992, 1994, 1995, 1996, 1997, 1998, this volume; Christiansen 1993) means that the central West Greenland area is now prospective for hydrocarbons in its own right. Analysis of the oils (Bojesen-Koefoed et al. in press) shows that their source rocks are probably nearby and, because the oils are found within the Lower Tertiary basalts, the source rocks must be below the basalts. It is therefore possible that in the offshore area oil could have migrated through the basalts and be trapped in overlying sediments. In the offshore area to the west of Disko and Nuussuaq (Fig. 1), Whittaker (1995, 1996) interpreted a few multichannel seismic lines acquired in 1990, together with some seismic data acquired by industry in the 1970s. He described a number of large rotated fault-blocks containing structural closures at top basalt level that could indicate leads capable of trapping hydrocarbons. In order to investigate Whittaker’s (1995, 1996) interpretation, in 1995 the Geological Survey of Greenland acquired 1960 km new multichannel seismic data (Fig. 1) using funds provided by the Government of Greenland, Minerals Office (now Bureau of Minerals and Petroleum) and the Danish State through the Mineral Resources Administration for Greenland. The data were acquired using the Danish Naval vessel Thetis which had been adapted to accommodate seismic equipment. The data acquired in 1995 have been integrated with the older data and an interpretation has been carried out of the structure of the top basalt reflection. This work shows a fault pattern in general agreement with that of Whittaker (1995, 1996), although there are differences in detail. In particular the largest structural closure reported by Whittaker (1995) has not been confirmed. Furthermore, one of Whittaker’s (1995) smaller leads seems to be larger than he had interpreted and may be associated with a DHI (direct hydrocarbon indicator) in the form of a ‘bright spot’.



Author(s):  
Yinshuo Li ◽  
Jianyong Song ◽  
Wenkai Lu ◽  
Patrice Monkam ◽  
Yile Ao


2021 ◽  
Author(s):  
Anke Dannowski ◽  
Heidrun Kopp ◽  
Ingo Grevemeyer ◽  
Grazia Caielli ◽  
Roberto de Franco ◽  
...  

<p>The Ligurian Basin is located north-west of Corsica at the transition from the western Alpine orogen to the Apennine system. The Back-arc basin was generated by the southeast retreat of the Apennines-Calabrian subduction zone. The opening took place from late Oligocene to Miocene. While the extension led to extreme continental thinning little is known about the style of back-arc rifting. Today, seismicity indicates the closure of this back-arc basin. In the basin, earthquake clusters occur in the lower crust and uppermost mantle and are related to re-activated, inverted, normal faults created during rifting.</p><p>To shed light on the present day crustal and lithospheric architecture of the Ligurian Basin, active seismic data have been recorded on short period ocean bottom seismometers in the framework of SPP2017 4D-MB, the German component of AlpArray. An amphibious refraction seismic profile was shot across the Ligurian Basin in an E-W direction from the Gulf of Lion to Corsica. The profile comprises 35 OBS and three land stations at Corsica to give a complete image of the continental thinning including the necking zone.</p><p>The majority of the refraction seismic data show mantle phases with offsets up to 70 km. The arrivals of seismic phases were picked and used to generate a 2-D P-wave velocity model. The results show a crust-mantle boundary in the central basin at ~12 km depth below sea surface. The P-wave velocities in the crust reach 6.6 km/s at the base. The uppermost mantle shows velocities >7.8 km/s. The crust-mantle boundary becomes shallower from ~18 km to ~12 km depth within 30 km from Corsica towards the basin centre. The velocity model does not reveal an axial valley as expected for oceanic spreading. Further, it is difficult to interpret the seismic data whether the continental lithosphere was thinned until the mantle was exposed to the seafloor. However, an extremely thinned continental crust indicates a long lasting rifting process that possibly did not initiate oceanic spreading before the opening of the Ligurian Basin stopped. The distribution of earthquakes and their fault plane solutions, projected along our seismic velocity model, is in-line with the counter-clockwise opening of the Ligurian Basin.</p>



2018 ◽  
Vol 6 (4) ◽  
pp. SO17-SO29 ◽  
Author(s):  
Yaneng Luo ◽  
Handong Huang ◽  
Yadi Yang ◽  
Qixin Li ◽  
Sheng Zhang ◽  
...  

In recent years, many important discoveries have been made in the marine deepwater hydrocarbon exploration in the South China Sea, which indicates the huge exploration potential of this area. However, the seismic prediction of deepwater reservoirs is very challenging because of the complex sedimentation, the ghost problem, and the low exploration level with sparse wells in deepwater areas. Conventional impedance inversion methods interpolate the low frequencies from well-log data with the constraints of interpreted horizons to fill in the frequency gap between the seismic velocity and seismic data and thereby recover the absolute impedance values that may be inaccurate and cause biased inversion results if wells are sparse and geology is complex. The variable-depth streamer seismic data contain the missing low frequencies and provide a new opportunity to remove the need to estimate the low-frequency components from well-log data. Therefore, we first developed a broadband seismic-driven impedance inversion approach using the seismic velocity as initial low-frequency model based on the Bayesian framework. The synthetic data example demonstrates that our broadband impedance inversion approach is of high resolution and it can automatically balance between the inversion resolution and stability. Then, we perform seismic sedimentology stratal slices on the broadband seismic data to analyze the depositional evolution history of the deepwater reservoirs. Finally, we combine the broadband amplitude stratal slices with the impedance inversion results to comprehensively predict the distribution of deepwater reservoirs. Real data application results in the South China Sea verify the feasibility and effectiveness of our method, which can provide a guidance for the future deepwater hydrocarbon exploration in this area.



Sign in / Sign up

Export Citation Format

Share Document