scholarly journals Effects of lumbosacral epidural ketamine and lidocaine inxylazine-sedated cats : article

Author(s):  
R. DeRossi ◽  
A.P. Benites ◽  
J.Z. Ferreira ◽  
J.M.N. Neto ◽  
L.C. Hermeto

In order to determine the analgesic and cardiovascular effects of the combination of epidural ketamine and lidocaine, 6 sedated cats were studied. Six healthy, young cats were used in a prospective randomised study. Each cat underwent 3 treatments, at least 1 week apart, via epidural injection: (1) ketamine (2.5 mg/kg), (2) lidocaine (4.0 mg/kg), and (3) ketamine (2.5 mg/kg) plus lidocaine (4.0 mg/kg). Epidural injections were administered through the lumbosacral space. Analgesia, motor block, sedation, heart rate, arterial blood pressure, respiratory rate and arterial oxygen saturation were measured. Rectal temperature was compared before and after sedation as well as after epidural administration of the drugs. Epidural administration of the ketamine/lidocaine combination induced prolonged analgesia extending from the coccygeal to the T13-L1 dermatomes, leading to severe ataxia. Cardiovascular effects were significant in all treatments: heart rate decreased, but there was a minimal reduction in arterial pressure. It was concluded that adding a dose of ketamine to epidural lidocaine in cats is feasible and effective.

2000 ◽  
Vol 89 (3) ◽  
pp. 947-955 ◽  
Author(s):  
Giuseppe Insalaco ◽  
Salvatore Romano ◽  
Adriana Salvaggio ◽  
Alberto Braghiroli ◽  
Paola Lanfranchi ◽  
...  

The ventilatory and arterial blood pressure (ABP) responses to isocapnic hypoxia during wakefulness progressively increased in normal subjects staying 4 wk at 5,050 m (Insalaco G, Romano S, Salvaggio A, Braghiroli A, Lanfranchi P, Patruno V, Donner CF, and Bonsignore G; J Appl Physiol 80: 1724–1730, 1996). In the same subjects ( n = 5, age 28–34 yr) and expedition, nocturnal polysomnography with ABP and heart rate (HR) recordings were obtained during the 1st and 4th week to study the cardiovascular effects of phasic (i.e., periodic breathing-dependent) vs. tonic (i.e., acclimatization-dependent) hypoxia during sleep. Both ABP and HR fluctuated during non-rapid eye movement sleep periodic breathing. None of the subjects exhibited an ABP increase during the ventilatory phases that correlated with the lowest arterial oxygen saturation of the preceding pauses. Despite attenuation of hypoxemia, ABP and HR behaviors during sleep in the 4th wk were similar to those in the 1st wk. Because ABP during periodic breathing in the ventilatory phase increased similarly to the ABP response to progressive hypoxia during wakefulness, ABP variations during ventilatory phases may reflect ABP responsiveness to peripheral chemoreflex sensitivity rather than the absolute value of hypoxemia, suggesting a major tonic effect of hypoxia on cardiorespiratory control at high altitude.


2021 ◽  
Vol 11 (1) ◽  
pp. 30-36
Author(s):  
Yu. E. Vaguine

According to some literature data, during voluntary long-term breath holding (BH), the heart rate (HR) increases, and according to others, it decreases.Objective: to determine the psychophysiological parameters that cause a change in HR during BH in athletes with different resistance to respiratory hypoxia.Materials and methods: HR at BH was studied in 14 beginner athletes, 15 basketball players and 12 swimmers-divers. Duration of BH was recorded. The HR was recorded on a heart rate monitor. After recording an electrocardiogram, the standard deviation of the duration of cardiac cycles was calculated. The arterial oxygen saturation was measured with a pulse oximeter. The statistically significant values of the correlation coefficient (r) were ≥0.33 with p < 0.05.Results: it was found that out of 41 sportsmen, HR increased by more than 5 % in 4, changed insignificantly in 7 and decreased by less than 5 % in 30. Beginner athletes had tachycardia, and BH was quickly interrupted by an imperative inhalation. The saturation of arterial blood with oxygen did not change and did not affect the change in HR. The decrease in heart rate in swimmers-divers in comparison with the other two groups of people examined was statistically significant (p < 0.05). The duration of BH had a direct correlation (r = 0.5) with bradycardia in these people. The duration of BH caused (r = 0.8) hypoxia, the value of which also directly influenced (r = 0.38) the severity of bradycardia. In addition, the decrease in HR depended on high HR (r = 0.36) and low HR variability (r = 0.38) before BH.Conclusion: tachycardia occurs in beginner athletes who experience discomfort with BH. Bradycardia occurs in sportsmen with a long-term BH setting without discomfort. Sympathicotonia in the prelaunch state predetermines the severity of bradycardia in BH. The duration of BH and the resulting hypoxia provide the occurrence of bradycardia.


Author(s):  
G.F. Stegmann

The cardiovascular effects of non-abdominal and abdominal surgery during isoflurane anaesthesia (A-group) or isoflurane anaesthesia supplemented with either epidural ropivacaine (AR-group; 0.75 % solution, 0.2 mℓ/kg) or morphine (AM-group; 0.1 mg/kg diluted in saline to 0.2mℓ/kg) were evaluated in 28 healthy pigs with a mean body weight of 30.3 kg SD ± 4.1 during surgical devascularisation of the liver. Anaesthesia was induced with the intramuscular injection of midazolam (0.3 mg/kg) and ketamine (10 mg/kg). Anaesthesia was deepened with intravenous propofol to enable tracheal intubation and maintained with isoflurane on a circle rebreathing circuit. The vaporiser was set at 2.5% for the A-group and 1.5% for the AR- and AM-groups. Differences between treatment groups were not statistically significant (P>0.05) for any of the variables. Differences between AM- and AR-groups were marginally significant heart rate (HR) (P = 0.06) and mean arterial blood pressure (MAP) (P = 0.08). Within treatment groups, differences for the A-group were statistically significant (P<0.05) between non-abdominal and abdominal surgery for HR, systolic blood pressure, diastolic blood pressure (DIA) and MAP. Within the AM-group differences were statistically significant (P < 0.05) for DIA and MAP, and within the AR group differences for all variables were not statistically significant (P > 0.05). It was concluded that in isoflurane-anaesthetised pigs, the epidural administration of ropivacaine decreased heart rate and improved arterial blood pressure during surgery.


2012 ◽  
Vol 27 (2) ◽  
pp. 137-143 ◽  
Author(s):  
Rafael DeRossi ◽  
Cassio Tadeu Dias Pompermeyer ◽  
Amadeu Batista Silva-Neto ◽  
Andrea Lantieri Correa de Barros ◽  
Paulo Henrique de Affonseca Jardim ◽  
...  

PURPOSE: To determine the analgesic, motor, sedation and systemic effects of lumbosacral epidural magnesium sulphate added to ketamine in the sheep. METHODS: Six healthy adult male mixed-breed sheep; weighing 43 ± 5 kg and aged 20-36 months. Each sheep underwent three treatments, at least 2 weeks apart, via epidural injection: (1) ketamine (KE; 2.5 mg/kg), (2) magnesium sulphate (MG; 100 mg), and (3) KE + MG (KEMG; 2.5 mg/kg + 100 mg, respectively). Epidural injections were administered through the lumbosacral space. Analgesia, motor block, sedation, cardiovascular effects, respiratory rate, skin temperature, and rectal temperature were evaluated before (baseline) and after drug administration as needed. RESULTS: The duration of analgesia with the lumbosacral epidural KEMG combination was 115 ± 17 min (mean ± SD), that is, more than twice that obtained with KE (41 ± 7 min) or MG (29 ± 5 min) alone. KE and KEMG used in this experiment induced severe ataxia. The heart rate and arterial blood pressures changes were no statistical difference in these clinically health sheep. CONCLUSION: The dose of magnesium sulphate to lumbosacral epidural ketamine in sheep is feasible, and can be used in procedures analgesics in sheep.


1989 ◽  
Vol 17 (1) ◽  
pp. 44-48 ◽  
Author(s):  
S. R. Finfer ◽  
S. I. P. MacKenzie ◽  
J. M. Saddler ◽  
T. G. L. Watkins

The cardiovascular responses to tracheal intubation using a fibreoptic bronchoscope or Macintosh laryngoscope were compared in twenty in-patients and twenty day-stay patients. Within these groups patients were randomly allocated to direct laryngoscopic or fibreoptic bronchoscopic intubation. Arterial blood pressure, heart rate and arterial oxygen saturation were recorded before induction and at one-minute intervals until four minutes after intubation. In both groups both laryngoscopic and bronchoscopic intubation resulted in a significant rise in blood pressure and heart rate. At no stage was there a significant difference in mean blood pressure in either group, or in heart rate in the day-stay patients, between the different methods of intubation. In the in-patients mean heart rate was significantly higher in those patients intubated with the bronchoscope at three and four minutes after intubation. Time taken for intubation was significantly longer in those patients intubated with the bronchoscope. In no patient did the arterial oxygen saturation fall below 98%.


2018 ◽  
Vol 28 (1) ◽  
Author(s):  
Mahmood Ganjifard ◽  
Masoumeh Samii ◽  
Samaneh Kouzegaran ◽  
Amir Sabertanha

One of the major complications of general anesthesia in the recovery room is arterial oxygen desaturation and hypoxemia. Positive end-expiratory pressure (PEEP) can improve arterial oxygen saturation by increasing FRC. This study aims to evaluate the effects of applying PEEP on arterial oxygen saturation and hemodynamic parameters in the patient undergoing cesarean section in VALIASR hospital. In this double blind clinical trial we randomly allocated 120 patients of class1 and 2 ASA scheduled to undergoing cesarean section into 3 group (in 40).Different levels of PEEP (0, 5 and 10 CmH2o) were applied to each group while zero PEEP was established as control. All other variables (anesthesia and surgery techniques) were the same for all patients SPO2, noninvasive mean arterial pressure and heart rate were measured before, during and after surgery (Recovery room). The comparison of noninvasive arterial blood pressure and heart rate during and after surgery did not show significant differences but mean o2 saturation in group B (5 cmH2o PEEP) and C (10 cm H2o PEEP) in PACU was higher than control group (98.30±0.93 and 98.50±0.90 as opposed to97.12±1.15 respectively) P0<001. In light of results applying PEEP is effective in preventing desaturation after surgery and improving respiratory indexes without the significant hemodynamic changes, the result of using five cmH2o PEEP is more efficient and satisfying.


2020 ◽  
Vol 91 (10) ◽  
pp. 785-789
Author(s):  
Dongqing Wen ◽  
Lei Tu ◽  
Guiyou Wang ◽  
Zhao Gu ◽  
Weiru Shi ◽  
...  

INTRODUCTION: We compared the physiological responses, psychomotor performances, and hypoxia symptoms between 7000 m and 7500 m (23,000 and 24,600 ft) exposure to develop a safer hypoxia training protocol.METHODS: In altitude chamber, 66 male pilots were exposed to 7000 and 7500 m. Heart rate and arterial oxygen saturation were continuously monitored. Psychomotor performance was assessed using the computational task. The hypoxic symptoms were investigated by a questionnaire.RESULTS: The mean duration time of hypoxia was 323.0 56.5 s at 7000 m and 218.2 63.3 s at 7500 m. The 6-min hypoxia training was completed by 57.6% of the pilots and 6.1% of the pilots at 7000 m and at 7500 m, respectively. There were no significant differences in pilots heart rates and psychomotor performance between the two exposures. The Spo2 response at 7500 m was slightly severer than that at 7000 m. During the 7000 m exposure, pilots experienced almost the same symptoms and similar frequency order as those during the 7500 m exposure.CONCLUSIONS: There were concordant symptoms, psychomotor performance, and very similar physiological responses between 7000 m and 7500 m during hypoxia training. The results indicated that 7000-m hypoxia awareness training might be an alternative to 7500-m hypoxia training with lower DCS risk and longer experience time.Wen D, Tu L, Wang G, Gu Z, Shi W, Liu X. Psychophysiological responses of pilots in hypoxia training at 7000 and 7500 m. Aerosp Med Hum Perform. 2020; 91(10):785789.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shinshu Katayama ◽  
Jun Shima ◽  
Ken Tonai ◽  
Kansuke Koyama ◽  
Shin Nunomiya

AbstractRecently, maintaining a certain oxygen saturation measured by pulse oximetry (SpO2) range in mechanically ventilated patients was recommended; attaching the INTELLiVENT-ASV to ventilators might be beneficial. We evaluated the SpO2 measurement accuracy of a Nihon Kohden and a Masimo monitor compared to actual arterial oxygen saturation (SaO2). SpO2 was simultaneously measured by a Nihon Kohden and Masimo monitor in patients consecutively admitted to a general intensive care unit and mechanically ventilated. Bland–Altman plots were used to compare measured SpO2 with actual SaO2. One hundred mechanically ventilated patients and 1497 arterial blood gas results were reviewed. Mean SaO2 values, Nihon Kohden SpO2 measurements, and Masimo SpO2 measurements were 95.7%, 96.4%, and 96.9%, respectively. The Nihon Kohden SpO2 measurements were less biased than Masimo measurements; their precision was not significantly different. Nihon Kohden and Masimo SpO2 measurements were not significantly different in the “SaO2 < 94%” group (P = 0.083). In the “94% ≤ SaO2 < 98%” and “SaO2 ≥ 98%” groups, there were significant differences between the Nihon Kohden and Masimo SpO2 measurements (P < 0.0001; P = 0.006; respectively). Therefore, when using automatically controlling oxygenation with INTELLiVENT-ASV in mechanically ventilated patients, the Nihon Kohden SpO2 sensor is preferable.Trial registration UMIN000027671. Registered 7 June 2017.


1944 ◽  
Vol 79 (1) ◽  
pp. 9-22 ◽  
Author(s):  
Frank L. Engel ◽  
Helen C. Harrison ◽  
C. N. H. Long

1. In a series of rats subjected to hemorrhage and shock a high negative correlation was found between the portal and peripheral venous oxygen saturations and the arterial blood pressure on the one hand, and the blood amino nitrogen levels on the other, and a high positive correlation between the portal and the peripheral oxygen saturations and between each of these and the blood pressure. 2. In five cats subjected to hemorrhage and shock the rise in plasma amino nitrogen and the fall in peripheral and portal venous oxygen saturations were confirmed. Further it was shown that the hepatic vein oxygen saturation falls early in shock while the arterial oxygen saturation showed no alteration except terminally, when it may fall also. 3. Ligation of the hepatic artery in rats did not affect the liver's ability to deaminate amino acids. Hemorrhage in a series of hepatic artery ligated rats did not produce any greater rise in the blood amino nitrogen than a similar hemorrhage in normal rats. The hepatic artery probably cannot compensate to any degree for the decrease in portal blood flow in shock. 4. An operation was devised whereby the viscera and portal circulation of the rat were eliminated and the liver maintained only on its arterial circulation. The ability of such a liver to metabolize amino acids was found to be less than either the normal or the hepatic artery ligated liver and to have very little reserve. 5. On complete occlusion of the circulation to the rat liver this organ was found to resist anoxia up to 45 minutes. With further anoxia irreversible damage to this organ's ability to handle amino acids occurred. 6. It is concluded that the blood amino nitrogen rise during shock results from an increased breakdown of protein in the peripheral tissues, the products of which accumulate either because they do not circulate through the liver at a sufficiently rapid rate or because with continued anoxia intrinsic damage may occur to the hepatic parenchyma so that it cannot dispose of amino acids.


PEDIATRICS ◽  
1987 ◽  
Vol 79 (4) ◽  
pp. 524-528
Author(s):  
Michael S. Jennis ◽  
Joyce L. Peabody

Continuous monitoring of oxygenation in sick newborns is vitally important. However, transcutaneous Po2 measurements have a number of limiations. Therefore, we report the use of the pulse oximeter for arterial oxygen saturation (Sao2) determination in 26 infants (birth weights 725 to 4,000 g, gestational ages 24 to 40 weeks, and postnatal ages one to 49 days). Fetal hemoglobin determinations were made on all infants and were repeated following transfusion. Sao2, readings from the pulse oximeter were compared with the Sao2 measured in vitro on simultaneously obtained arterial blood samples. The linear regression equation for 177 paired measurements was: y = 0.7x + 27.2; r = .9. However, the differences between measured Sao2 and the pulse oximeter Sao2 were significantly greater in samples with &gt; 50% fetal hemoglobin when compared with samples with &lt; 25% fetal hemoglobin (P &lt; .001). The pulse oximeter was easy to use, recorded trends in oxygenation instantaneously, and was not associated with skin injury. We conclude that pulse oximetry is a reliable technique for the continuous, noninvasive monitoring of oxygenation in newborn infants.


Sign in / Sign up

Export Citation Format

Share Document