scholarly journals Anaesthetic management of a 10-month-old white rhinoceros (Ceratotherium simum) calf for emergency exploratory celiotomy

Author(s):  
Gareth E. Zeiler ◽  
George F. Stegmann

A 10-month-old, 580 kg, hand-reared white rhinoceros (Ceratotherium simum) calf was presented for emergency exploratory celiotomy. Anaesthesia was safely induced with three successive intravenous (IV) boluses of diazepam (10 mg) and ketamine (100 mg) until the trachea could be intubated. Anaesthesia was adequately maintained with isoflurane-inoxygen (mean end-tidal isoflurane concentration of 1.1% ± 0.2%) on a circle anaesthetic machine with carbon dioxide absorption and an intravenous infusion of ketamine and medetomidine at a mean rate of 0.02 mg/kg/min and 0.02 µg/kg/min, respectively. Mean values recorded during anaesthesia and surgery were heart rate (56.9 ± 11 beats/min), mean arterial blood pressure (6.16 kPa ± 1.75 kPa), end-tidal carbon dioxide concentration (6.23 kPa ± 0.30 kPa). Abdominal gas distension contributed to hypoventilation that resulted in hypercapnoea, confirmed by arterial blood gas analysis (PaCO2 14.69 kPa), which required controlled ventilation for correction. Blood volume was maintained with the intravenous infusion of a balanced electrolyte solution at 10 mL/kg/h and blood pressure supported with a continuous infusion of dobutamine and phenylephrine. Duration of anaesthesia was 3.5 h. It was concluded that anaesthesia was safely induced in a compromised white rhinoceros calf with a combination of diazepam and ketamine. A constant-rate infusion of medetomidine and ketamine allowed for a reduction in the dose of isoflurane required during maintenance of anaesthesia and improved intra-operative blood pressure management.

2000 ◽  
Vol 93 (2) ◽  
pp. 370-373 ◽  
Author(s):  
Kodali Bhavani-Shankar ◽  
Richard A. Steinbrook ◽  
David C. Brooks ◽  
Sanjay Datta

Background There is controversy about whether capnography is adequate to monitor pulmonary ventilation to reduce the risk of significant respiratory acidosis in pregnant patients undergoing laparoscopic surgery. In this prospective study, changes in arterial to end-tidal carbon dioxide pressure difference (PaCO2--PetCO2), induced by carbon dioxide pneumoperitoneum, were determined in pregnant patients undergoing laparoscopic cholecystectomy. Methods Eight pregnant women underwent general anesthesia at 17-30 weeks of gestation. Carbon dioxide pnueumoperitoneum was initiated after obtaining arterial blood for gas analysis. Pulmonary ventilation was adjusted to maintain PetCO2 around 32 mmHg during the procedure. Arterial blood gas analysis was performed during insufflation, after the termination of insufflation, after extubation, and in the postoperative period. Results The mean +/- SD for PaCO2--PetCO2 was 2.4 +/- 1.5 before carbon dioxide pneumoperitoneum, 2.6 +/- 1.2 during, and 1.9 +/- 1.4 mmHg after termination of pneumoperitoneum. PaCO2 and pH during pneumoperitoneum were 35 +/- 1.7 mmHg and 7.41 +/- 0.02, respectively. There were no significant differences in either mean PaCO2--PetCO2 or PaCO2 and pH during various phases of laparoscopy. Conclusions Capnography is adequate to guide ventilation during laparoscopic surgery in pregnant patients. Respiratory acidosis did not occur when PetCO2 was maintained at 32 mmHg during carbon dioxide pneumoperitoneum.


2021 ◽  
Vol 49 (4) ◽  
pp. 030006052110047
Author(s):  
Mingliang Bao ◽  
Wei Cai ◽  
Shengmei Zhu ◽  
Xianhui Kang

Laparoscopy is widely used because it induces minimal postoperative pain and facilitates rapid recovery. However, carbon dioxide (CO2) embolism is a rare but potentially fatal complication of laparoscopic surgery. Earlier reports have shown that decreased end-tidal CO2 (ETCO2) and increased partial pressure of CO2 might be useful indicators of CO2 embolism. We herein report a case of CO2 embolism after the freed bladder neck was released during laparoscopic radical prostatectomy. Sudden hemodynamic disorder and increased ETCO2 combined with immediate arterial blood gas analysis led us to suspect CO2 embolism, which was confirmed by the aspiration of foamy blood from the central venous catheter. The patient was successfully resuscitated and recovered well. This case illustrates that hemodynamic collapse accompanied by increased ETCO2 can indicate CO2 embolism.


2021 ◽  
pp. 039139882098785
Author(s):  
Lawrence Garrison ◽  
Jeffrey B Riley ◽  
Steve Wysocki ◽  
Jennifer Souai ◽  
Hali Julick

Measurements of transcutaneous carbon dioxide (tcCO2) have been used in multiple venues, such as during procedures utilizing jet ventilation, hyperbaric oxygen therapy, as well as both the adult and neo-natal ICUs. However, tcCO2 measurements have not been validated under conditions which utilize an artificial lung, such cardiopulmonary bypass (CPB). The purpose of this study was to (1) validate the use of tcCO2 using an artificial lung during CPB and (2) identify a location for the sensor that would optimize estimation of PaCO2 when compared to the gold standard of blood gas analysis. tcCO2 measurements ( N = 185) were collected every 30 min during 54 pulsatile CPB procedures. The agreement/differences between the tcCO2 and the PaCO2 were compared by three sensor locations. Compared to the earlobe or the forehead, the submandibular PtcCO2 values agreed best with the PaCO2 and with a median difference of –.03 mmHg (IQR = 5.4, p < 0.001). The small median difference and acceptable IQR support the validity of the tcCO2 measurement. The multiple linear regression model for predicting the agreement between the submandibular tcCO2 and PaCO2 included the SvO2, the oxygenator gas to blood flow ratio, and the native perfusion index ( R2 = 0.699, df = 1, 60; F = 19.1, p < 0.001). Our experience in utilizing tcCO2 during CPB has demonstrated accuracy in estimating PaCO2 when compared to the gold standard arterial blood gas analysis, even during CO2 flooding of the surgical field.


2020 ◽  
Vol 37 (12) ◽  
pp. 847.1-847
Author(s):  
James Price ◽  
Daniel Sandbach ◽  
Ari Ercole ◽  
Alastair Wilson ◽  
Ed Barnard

Aims/Objectives/BackgroundIn the United Kingdom (UK), 20% of patients with severe traumatic brain injury (TBI) receive pre-hospital emergency anaesthesia (PHEA). Current guidance recommends an end-tidal carbon dioxide (ETCO2) of 4.0–4.5kPa to achieve a low-normal arterial partial pressure of CO2 (PaCO2), and reduce secondary brain injury. This recommendation assumes a 0.5kPa ETCO2-PaCO2 gradient. However, the gradient in the acute phase of TBI is unknown. Our primary aim was to report the ETCO2-PaCO2 gradient of TBI patients at hospital arrival.Methods/DesignA retrospective cohort study of adult patients with serious TBI, who received a PHEA by a pre-hospital critical care team in the East of England between 1st April 2015 to 31st December 2017. Linear regression was performed to test for correlation and reported as R-squared (R2). A Bland-Altman plot was used to test for paired ETCO2 and PaCO2 agreement and reported with 95% confidence intervals (95%CI). ETCO2-PaCO2 gradient data were compared with a two-tailed, unpaired, t-test.Results/Conclusions107 patients were eligible for inclusion. Sixty-seven patients did not receive a PaCO2 sample within 30 minutes of hospital arrival and were therefore excluded. Forty patients had complete data and were included in the final analysis; per protocol.The mean ETCO2-PaCO2 gradient was 1.7 (±1.0) kPa, with only moderate correlation of ETCO2 and PaCO2 at hospital arrival (R2=0.23, p=0.002). The Bland-Altman bias was 1.7 (95%CI 1.4–2.0) kPa with upper and lower limits of agreement of 3.6 (95%CI 3.0–4.1) kPa and -0.2 (95%CI -0.8–0.3) kPa respectively. There was no significant gradient correlation in patients with a co-existing serious thoracic injury (R2=0.13, p=0.10), and this cohort had a larger ETCO2-PaCO2 gradient, 2.0 (±1.1) kPa, p=0.01. Patients who underwent pre-hospital arterial blood sampling had an arrival PaCO2 of 4.7 (±0.2) kPa.Lower ETCO2 targets than previously recommended may be safe and appropriate. The use of pre-hospital PaCO2 measurement is advocated.


Sign in / Sign up

Export Citation Format

Share Document