scholarly journals In vitro biomechanical study of pedicle screw pull-out strength based on different screw path preparation techniques

2016 ◽  
Vol 50 (2) ◽  
pp. 177 ◽  
Author(s):  
Mark Moldavsky ◽  
Kanaan Salloum ◽  
Brandon Bucklen ◽  
Saif Khalil ◽  
JwalantS Mehta
Spine ◽  
2005 ◽  
Vol 30 (22) ◽  
pp. 2530-2537 ◽  
Author(s):  
Vedat Deviren ◽  
Emre Acaroglu ◽  
Joe Lee ◽  
Masaru Fujita ◽  
Serena Hu ◽  
...  

2004 ◽  
Vol 17 (03) ◽  
pp. 136-140
Author(s):  
G. S. Martin ◽  
M. S. Gill ◽  
G. A. Sod

SummaryThe purpose of this study was to determine the in vitro pull-out force and strength of 4.5-mm and 5.5-mm cortical screws inserted in the diaphysis of foal third metacarpal bones with and without polymethylmethacrylate (PMMA) filling the medullary cavity. Filling the medullary cavity with PMMA significantly increased the pull-out force of 4.5-mm screws by 2.0-fold, and 5.5-mm screws by 2.2-fold, compared to controls (p < 0.001). Also the mean pull-out strength per mm of bones filled with PMMA was significantly greater (p < 0.001) than empty control bones. Our results suggest that filling the medullary cavity with PMMA at sites of greater stress, such as the ends of the plate and near the fracture site, may result in a more stable internal fixation.


Author(s):  
Samuel Q. Tia ◽  
Jennifer M. Buckley ◽  
Thuc-Quyen Nguyen ◽  
Jeffrey C. Lotz ◽  
Shane Burch

Long posterior fusion constructs in the lumbar spine cause substantial posteriorly directed loading of the supporting pedicle screws, particularly during patient bending activities. Although there are numerous documented accounts of clinical failure at the pedicle screw-bone interface [1,2], the in situ pull-out strength of pedicle screws in long surgical constructs has not been characterized. Previous biomechanical studies have quantified pedicle screw pull-out force in cadaveric models through destructive testing or in nondestructive cases, through the use of custom-machined pedicle screws instrumented with strain gages [3–6]. However, these techniques involve altering screw geometry and may fail to properly simulate in vivo mechanical loading conditions. The goal of this study was to develop and validate a sensor system for measuring pedicle screw pull-out forces in long posterior constructs in situ during multi-segmental cadaveric testing.


2020 ◽  
Vol 25 (1) ◽  
pp. 66-72 ◽  
Author(s):  
Shota Takenaka ◽  
Takashi Kaito ◽  
Ken Ishii ◽  
Kota Watanabe ◽  
Kei Watanabe ◽  
...  

2018 ◽  
Vol 8 (11) ◽  
pp. 2261
Author(s):  
Sangho Jun ◽  
Hyonseok Jang ◽  
Enji Cheon ◽  
MinJu Kim ◽  
Sungwon Ju ◽  
...  

The aim of this study was to analyze the load distribution of interim restorations using healing cap during immediate loading implant treatment in vitro. A total of 29 models with interim restorations which were fabricated with healing cap were selected. The pull-out strength was measured with a used healing cap and new healing cap. The compressive strength and sinking distance were also measured. The pull-out strength of interim restoration showed lower value (max. 29.8 N) compared to the natural bite force. The sinking amounts were larger than normal tooth sinking. The sinking amounts of interim restorations fabricated on a healing cap were roughly 3 times (0.3–0.5 mm under 450 N) those of normal teeth. The interim restoration on plastic healing cap would be useful for immediate loading implant treatment.


2020 ◽  
Vol 14 (3) ◽  
pp. 265-272
Author(s):  
Atsushi Ikeura ◽  
Taketoshi Kushida ◽  
Kenichi Oe ◽  
Yoshihisa Kotani ◽  
Muneharu Ando ◽  
...  

Study Design: Biomechanical study.Purpose: To assess the correlation between the computed tomography (CT) values of the pedicle screw path and screw pull-out strength.Overview of Literature: The correlation between pedicle screw pull-out strength and bone mineral density has been well established. In addition, several reports have demonstrated a correlation between bone mineral density and CT values. However, no previous biomechanical studies investigated the correlation between CT values and pedicle screw pull-out strength.Methods: Sixty fresh-frozen lumbar vertebrae from 6-month-old pigs were used. Before screw insertion, the CT values of the screw path were obtained for each sample. Specimens were then randomly divided into three equal groups. Each group had one of three pedicle screws inserted: 4.0-mm LEGACY (4.0-LEG), 4.5-mm LEGACY (4.5-LEG), or 4.5-mm SOLERA (4.5-SOL) (all from Medtronic Sofamor Danek Inc., Memphis, TN, USA). Each screw had a consistent 30-mm thread length. Axial pull-out testing was performed at a rate of 1.0 mm/min. Correlations between the CT values and pedicle screw pull-out strength were evaluated using Pearson’s correlation coefficient analysis.Results: The correlation coefficients between the CT values of the screw path and pedicle screw pull-out strength for the 4.0-LEG, 4.5-LEG, and 4.5-SOL groups were 0.836 (<i>p</i> <0.001), 0.780 (<i>p</i> <0.001), and 0.873 (<i>p</i> <0.001), respectively. Greater CT values were associated with greater screw pull-out strength.Conclusions: The CT values of the screw path were strongly positively correlated with pedicle screw pull-out strength, regardless of the screw type and diameter, suggesting that the CT values could be clinically useful for predicting pedicle screw pull-out strength.


Sign in / Sign up

Export Citation Format

Share Document