scholarly journals Detection and classification of myocardial infarction with support vector machine classifier using grasshopper optimization algorithm

2021 ◽  
Vol 11 (3) ◽  
pp. 185
Author(s):  
Naser Safdarian ◽  
ShadiYoosefian Nezhad ◽  
NaderJafarnia Dabanloo
2018 ◽  
Vol 10 (3) ◽  
pp. 478-495 ◽  
Author(s):  
Ibrahim Aljarah ◽  
Ala’ M. Al-Zoubi ◽  
Hossam Faris ◽  
Mohammad A. Hassonah ◽  
Seyedali Mirjalili ◽  
...  

Author(s):  
PETER MC LEOD ◽  
BRIJESH VERMA

This paper presents a novel technique for the classification of suspicious areas in digital mammograms. The proposed technique is based on clustering of input data into numerous clusters and amalgamating them with a Support Vector Machine (SVM) classifier. The technique is called multi-cluster support vector machine (MCSVM) and is designed to provide a fast converging technique with good generalization abilities leading to an improved classification as a benign or malignant class. The proposed MCSVM technique has been evaluated on data from the Digital Database of Screening Mammography (DDSM) benchmark database. The experimental results showed that the proposed MCSVM classifier achieves better results than standard SVM. A paired t-test and Anova analysis showed that the results are statistically significant.


2021 ◽  
pp. 004051752110592
Author(s):  
Zhiyu Zhou ◽  
Wenxiong Deng ◽  
Yaming Wang ◽  
Zefei Zhu

To improve accuracy in clothing image recognition, this paper proposes a clothing classification method based on a parallel convolutional neural network (PCNN) combined with an optimized random vector functional link (RVFL). The method uses the PCNN model to extract features of clothing images. Then, the structure-intensive and dual-channel convolutional neural network (i.e., the PCNN) is used to solve the problems of traditional convolutional neural networks (e.g., limited data and prone to overfitting). Each convolutional layer is followed by a batch normalization layer, and the leaky rectified linear unit activation function and max-pooling layers are used to improve the performance of the feature extraction. Then, dropout layers and fully connected layers are used to reduce the amount of calculation. The last layer uses the RVFL as optimized by the grasshopper optimization algorithm to replace the SoftMax layer and classify the features, further improving the stability and accuracy of classification. In this study, two aspects of the classification (feature extraction and feature classification) are improved, effectively improving the accuracy. The experimental results show that on the Fashion-Mnist dataset, the accuracy of the algorithm in this study reaches 92.93%. This value is 1.36%, 2.05%, 0.65%, and 3.76% higher than that of the local binary pattern (LBP)-support vector machine (SVM), histogram of oriented gradients (HOG)-SVM, LBP-HOG-SVM, and AlexNet-sparse representation-based classifier algorithms, respectively, effectively demonstrating the classification performance of the algorithm.


Sign in / Sign up

Export Citation Format

Share Document