Measurement of thoracic and lumbar pedicle dimensions in Nigerians using computed tomography

2020 ◽  
Vol 14 (1) ◽  
pp. 12
Author(s):  
OmodeleA Olowoyeye ◽  
Olakunle Badmus ◽  
Patricia Ogbe ◽  
Adewole Akinsulire ◽  
Olubukola Omidiji
2021 ◽  
Vol 12 ◽  
pp. 518
Author(s):  
Mohamed M. Arnaout ◽  
Magdy O. ElSheikh ◽  
Mansour A. Makia

Background: Transpedicular screws are extensively utilized in lumbar spine surgery. The placement of these screws is typically guided by anatomical landmarks and intraoperative fluoroscopy. Here, we utilized 2-week postoperative computed tomography (CT) studies to confirm the accuracy/inaccuracy of lumbar pedicle screw placement in 145 patients and correlated these findings with clinical outcomes. Methods: Over 6 months, we prospectively evaluated the location of 612 pedicle screws placed in 145 patients undergoing instrumented lumbar fusions addressing diverse pathology with instability. Routine anteroposterior and lateral plain radiographs were obtained 48 h after the surgery, while CT scans were obtained at 2 postoperative weeks (i.e., ideally these should have been performed intraoperatively or within 24–48 h of surgery). Results: Of the 612 screws, minor misplacement of screws (≤2 mm) was seen in 104 patients, moderate misplacement in 34 patients (2–4 mm), and severe misplacement in 7 patients (>4 mm). Notably, all the latter 7 (4.8% of the 145) patients required repeated operative intervention. Conclusion: Transpedicular screw insertion in the lumbar spine carries the risks of pedicle medial/lateral violation that is best confirmed on CT rather than X-rays/fluoroscopy alone. Here, we additional found 7 patients (4.8%) who with severe medial/lateral pedicle breach who warranting repeated operative intervention. In the future, CT studies should be performed intraoperatively or within 24–48 h of surgery to confirm the location of pedicle screws and rule in our out medial or lateral pedicle breaches.


2013 ◽  
Vol 26 (6) ◽  
pp. E248-E253 ◽  
Author(s):  
Keitaro Matsukawa ◽  
Yoshiyuki Yato ◽  
Osamu Nemoto ◽  
Hideaki Imabayashi ◽  
Takashi Asazuma ◽  
...  

1982 ◽  
Vol 8 (3) ◽  
pp. 197-199 ◽  
Author(s):  
Michel De Boeck ◽  
Eddy De Smedt ◽  
Roland Potvliege

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0253019
Author(s):  
Tomoyo Y. Irie ◽  
Tohru Irie ◽  
Alejandro A. Espinoza Orías ◽  
Kazuyuki Segami ◽  
Norimasa Iwasaki ◽  
...  

Background Although the pedicle is routinely used as a surgical fixation site, the pedicle wall bone area fraction (bone area per unit area) and its distribution at the isthmus of the pedicle remain unknown. The bone area fraction at the pedicle isthmus is an important factor contributing to the strength of pedicle screw constructs. This study investigates the lumbar pedicle wall microstructure based on micro-computed tomography. Methods Six fresh-frozen cadaveric lumbar spines were analyzed. Left and right pedicles of each vertebra from L1 to L5 were resected for micro-computed tomography scanning. Data was analyzed with custom-written software to determine regional variation in pedicle wall bone area fraction. The pedicular cross-section was divided into four regions: lateral, medial, cranial, and caudal. The mean bone area fraction values for each region were calculated for all lumbar spine levels. Results The lateral region showed lower bone area fraction than the medial region at all spinal levels. Bone area fraction in the medial region was the highest at all levels except for L4, and the median values were 99.8% (95.9–100%). There were significant differences between the lateral region and the caudal region at L1, L2 and L3, but none at L4 and L5. The bone area fraction in the lateral region was less than 64% at all spinal levels and that in the caudal region was less than 67% at the L4 and L5 levels. Conclusions This study provides initial detailed data on the lumbar pedicle wall microstructure based on micro-computed tomography. These findings may explain why there is a higher incidence of pedicle screw breach in the pedicle lateral and caudal walls.


Neurosurgery ◽  
1995 ◽  
Vol 37 (4) ◽  
pp. 711???716 ◽  
Author(s):  
Edward C. Benzel ◽  
Frederick W. Rupp ◽  
Bruce M. McCormack ◽  
Nevan G. Baldwin ◽  
John A. Anson ◽  
...  

2019 ◽  
Vol 13 (6) ◽  
pp. 936-941
Author(s):  
Min Jia Chua ◽  
Shiblee Siddiqui ◽  
Chun Sing Yu ◽  
Colum Patrick Nolan ◽  
Jacob Yoong-Leong Oh

Neurosurgery ◽  
1995 ◽  
Vol 37 (4) ◽  
pp. 711-716 ◽  
Author(s):  
Edward C. Benzel ◽  
Frederick W. Rupp ◽  
Bruce M. McCormack ◽  
Nevan G. Baldwin ◽  
John A. Anson ◽  
...  

Author(s):  
H.W. Deckman ◽  
B.F. Flannery ◽  
J.H. Dunsmuir ◽  
K.D' Amico

We have developed a new X-ray microscope which produces complete three dimensional images of samples. The microscope operates by performing X-ray tomography with unprecedented resolution. Tomography is a non-invasive imaging technique that creates maps of the internal structure of samples from measurement of the attenuation of penetrating radiation. As conventionally practiced in medical Computed Tomography (CT), radiologists produce maps of bone and tissue structure in several planar sections that reveal features with 1mm resolution and 1% contrast. Microtomography extends the capability of CT in several ways. First, the resolution which approaches one micron, is one thousand times higher than that of the medical CT. Second, our approach acquires and analyses the data in a panoramic imaging format that directly produces three-dimensional maps in a series of contiguous stacked planes. Typical maps available today consist of three hundred planar sections each containing 512x512 pixels. Finally, and perhaps of most import scientifically, microtomography using a synchrotron X-ray source, allows us to generate maps of individual element.


Sign in / Sign up

Export Citation Format

Share Document