scholarly journals Spatial Autocorrelation Analysis of Natuna’s Capture Fisheries Production through Moran’s I and LISA Indices

Author(s):  
Gusrizal Gusrizal ◽  
Adji Suradji Muhammad ◽  
Rodi Wahyudi ◽  
Rado Yendra ◽  
Ady Muzwardi
Author(s):  
Rokhana Dwi Bekti

Spatial autocorrelation is a spatial analysis to determine the relationship pattern or correlation among some locations (observation). On the poverty case of East Java, this method will provide important information for analyze the relationship of poverty characteristics in each district or cities. Therefore, in this research performed spatial autocorrelation analysis on the data of East Java’s poverty. The method used is moran's I test and Local Indicator of Spatial Autocorrelation (LISA). The analysis showed that by the moran's I test, there is spatial autocorrelation found in the percentage of poor people amount in East Java, both in 2006 and 2007. While by LISA, obtained the conclusion that there is a significant grouping of district or cities.


2020 ◽  
Vol 19 (2) ◽  
pp. 119-126
Author(s):  
Syamsir Syamsir ◽  
Andi Daramusseng ◽  
Rudiman Rudiman

Latar belakang: Demam Berdarah Dengue (DBD) masih menjadi masalah kesehatan masyarakat. Indonesia menjadi salah satu negara yang setiap tahunnya ditemukan kasus DBD. Program pengendalian DBD masih kurang maksimal karena puskesmas belum mampu memetakan wilayah rentan DBD. Penelitian ini bertujuan untuk mengetahui pola sebaran DBD di Kecamatan Samarinda Utara dengan menggunakan autokorelasi spasial.Metode: Penelitian ini dilaksanakan di kelurahan yang berada pada wilayah kerja Puskesmas Lempake, Kecamatan Samarinda Utara. Sampel penelitian dipilih berdasarkan metode cluster sampling. Berdasarkan kriteria jumlah kasus tertinggi maka kelurahan di Kecamatan Samarinda Utara yang representatif untuk dijadikan cluster pada penelitian ini yaitu kelurahan yang berada pada wilayah kerja Puskesmas Lempake. Analisis yang digunakan pada penelitian ini yaitu Spatial Autocorrelation Analysis dengan menggunakan metode Moran’s I. Spatial Autocorrelation Analysis digunakan untuk mengetahui apakah terdapat hubungan antar titik dan arah hubungannya (postif atau negatif).Hasil: Nilai Z-score atau Z hitung = 3,651181 dengan nilai kritis (Z α/2) sebesar 2,58. Ini menunjukkan bahwa Z-score > Z α/2 (3,6511 > 2,58) sehingga Ho ditolak. Terdapat autokorelasi spasial pada sebaran kasus DBD di wilayah kerja Puskesmas Lempake. Sebaran kasus DBD di wilayah kerja Puskesmas Lempake termasuk kategori clustered atau berkelompok pada lokasi tertentu. Moran’s Index (I) = 0,124420 artinya I > 0. Ini menunjukkan bahwa pola sebaran DBD di wilayah kerja Puskesmaas Lempake merupakan autokorelasi positif.    Simpulan: Pola sebaran kasus DBD di Kecamatan Samarinda Utara yaitu clustered. Autokorelasi spasial yang dihasilkan yaitu autokorelasi positif.  ABSTRACTTitle: Spatial Autocorrelation of Dengue Hemorrhagic Fever  in North Samarinda district, Samarinda CityBackground: Dengue Hemorrhagic Fever (DHF) is still a public health problem. Indonesia is one of the countries where DHF cases are found every year. The DHF control program is still less than optimal because the public health center has not been able to map the DHF vulnerable areas. This study aims to determine the pattern of DHF distribution in the District of North Samarinda by using spatial autocorrelation.Method: This research was conducted in a village located in the working area of the Lempake Health Center, Samarinda Utara district. The research sample was chosen based on the cluster sampling method. Based on the criteria for the highest number of cases, the representative village to be clustered in this study are the village within the working area of the Lempake Health Center. The analysis used in this study is spatial autocorrelation nalysis using the Moran’s I. Spatial autocorrelation Analysis method is used to determine whether there is a relationship between the point and direction of the relationship (positive or negative).Result: Z-score or Z count = 3.651181 with a critical value (Z α / 2) of 2.58. This shows that Z-score> Z α / 2 (3.6511> 2.58) so that Ho is rejected. There is a spatial autocorrelation in the distribution of dengue cases in the working area of the Lempake Health Center. The distribution of dengue cases in the working area of Lempake Health Center is classified as clustered or grouped in certain locations. Moran’s Index (I) = 0.124420 means I> 0. This shows that the pattern of DHF distribution in the work area of Lempake Health Center is a positive autocorrelation.Conclusion: The pattern of distribution of dengue cases in the District of North Samarinda is clustered. The resulting spatial autocorrelation is positive autocorrelation. 


2020 ◽  
Vol 12 (2) ◽  
pp. 78
Author(s):  
Syamsir Syamsir ◽  
Dwi Murdaningsih Pangestuty

Introduction: Dengue Hemorrhagic Fever (DHF) is the disease that spread quickly in tropical and subtropical regions. DHF can spread quickly because the dengue virus is transmitted through the Aedes aegypti and Aedes albopictus into the human body. One of the provinces that felt the impact of the dengue outbreak was East Kalimantan, especially Samarinda City. Efforts to prevent dengue have been attempted by health center officials in Samarinda City. The cause has not yet been effective in controlling DHF programs in Samarinda City because there is no mapping of DHF vulnerable areas. This study aims to map the pattern of DHF distribution in the working area of the health center to maximize the implementation of the DHF control program. Methods: The population in this study were all DHF sufferers registered at the Air Putih Health Center in 2018. Withdrawal samples using total sampling techniques. The analysis used in this study is spatial autocorrelation analysis by Moran’s I. The Moran Index method is used to determine the autocorrelation of the distribution of DHF cases. Result and Discussion: The results of the autocorrelation analysis showed a Z score <-Z α/2, meaning Ho was rejected. This shows that there is spatial autocorrelation in the distribution of DHF in the Health Center. Based on the Moran’s I value (Moran’s I = -0.045850) which has a negative value indicates that the distribution of DHF in the working area of the Health Center tends to spread or dispersed. Conclusion: This study concludes that the more cases of DHF in a densely populated area, the greater the chance of spatial autocorrelation. The closeness between DHF cases can form spatial autocorrelation with the dispersed category.


2021 ◽  
Vol 19 (17) ◽  
Author(s):  
Nur Asyikin Mohd Sairi ◽  
Burhaida Burhan ◽  
Edie Ezwan Mohd Safian

Geographic location naturally generates spatial patterns that are either clustered, dispersed, or random. Moreover, Tobler’s First Law of Geography is essentially a testable assumption in the concept where geographic location matters and one method for quantifying Tobler’s law of geography is through measures of spatial autocorrelation. Therefore, the purpose of this study is to identify the spatial patterns of housing distribution in Johor Bahru through the spatial autocorrelation method. The result of the global spatial autocorrelation analysis demonstrates a high degree of clustering within the housing distribution, as well as the identification of a clustered pattern with a highly positive Moran’s I value of 0.995207. Following that, the LISA cluster map successfully identified individual clusters of each housing unit with their neighbours through the red and blue colours displayed on the map, as well as revealing home buyers’ preferences for a property in each location.


2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Matheus Supriyanto Rumetna ◽  
Eko Sediyono ◽  
Kristoko Dwi Hartomo

Abstract. Bantul Regency is a part of Yogyakarta Special Province Province which experienced land use changes. This research aims to assess the changes of shape and level of land use, to analyze the pattern of land use changes, and to find the appropriateness of RTRW land use in Bantul District in 2011-2015. Analytical methods are employed including Geoprocessing techniques and analysis of patterns of distribution of land use changes with Spatial Autocorrelation (Global Moran's I). The results of this study of land use in 2011, there are thirty one classifications, while in 2015 there are thirty four classifications. The pattern of distribution of land use change shows that land use change in 2011-2015 has a Complete Spatial Randomness pattern. Land use suitability with the direction of area function at RTRW is 24030,406 Ha (46,995406%) and incompatibility of 27103,115 Ha or equal to 53,004593% of the total area of Bantul Regency.Keywords: Geographical Information System, Land Use, Geoprocessing, Global Moran's I, Bantul Regency. Abstrak. Analisis Perubahan Tata Guna Lahan di Kabupaten Bantul Menggunakan Metode Global Moran’s I. Kabupaten Bantul merupakan bagian dari Provinsi Daerah Istimewa Yogyakarta yang mengalami perubahan tata guna lahan. Penelitian ini bertujuan untuk mengkaji perubahan bentuk dan luas penggunaan lahan, menganalisis pola sebaran perubahan tata guna lahan, serta kesesuaian tata guna lahan terhadap RTRW yang terjadi di Kabupaten Bantul pada tahun 2011-2015. Metode analisis yang digunakan antara lain teknik Geoprocessing serta analisis pola sebaran perubahan tata guna lahan dengan Spatial Autocorrelation (Global Moran’s I). Hasil dari penelitian ini adalah penggunaan tanah pada tahun 2011, terdapat tiga puluh satu klasifikasi, sedangkan pada tahun 2015 terdapat tiga puluh empat klasifikasi. Pola sebaran perubahan tata guna lahan menunjukkan bahwa perubahan tata guna lahan tahun 2011-2015 memiliki pola Complete Spatial Randomness. Kesesuaian tata guna lahan dengan arahan fungsi kawasan pada RTRW adalah seluas 24030,406 Ha atau mencapai 46,995406 % dan ketidaksesuaian seluas 27103,115 Ha atau sebesar 53,004593 % dari total luas wilayah Kabupaten Bantul. Kata Kunci: Sistem Informasi Georafis, tata guna lahan, Geoprocessing, Global Moran’s I, Kabupaten Bantul.


2012 ◽  
Vol 9 (2) ◽  
pp. 1
Author(s):  
Asra Hosseini

From earliest cities to the present, spatial division into residential zones and neighbourhoods is the universal feature of urban areas. This study explored issue of measuring neighbourhoods through spatial autocorrelation method based on Moran's I index in respect of achieving to best neighbourhoods' model for forming cities smarter. The research carried out by selection of 35 neighbourhoods only within central part of traditional city of Kerman in Iran. The results illustrate, 75% of neighbourhoods' area in the inner city of Kerman had clustered pattern, and it shows reduction in Moran's index is associated with disproportional distribution of density and increasing in Moran's I and Z-score have monotonic relation with more dense areas and clustered pattern. It may be more efficient for urban planner to focus on spatial autocorrelation to foster neighbourhood cohesion rather than emphasis on suburban area. It is recommended characteristics of historic neighbourhoods can be successfully linked to redevelopment plans toward making city smarter, and also people's quality of life can be related to the way that neighbourhoods' patterns are defined. 


2012 ◽  
Vol 9 (2) ◽  
pp. 1
Author(s):  
Asra Hosseini

From earliest cities to the present, spatial division into residential zones and neighbourhoods is the universal feature ofurban areas. This study explored issue ofmeasuring neighbourhoods through spatial autocorrelation method based on Moran's I index in respect of achieving to best neighbourhoods' model for forming cities smarter. The research carried out by selection of 35 neighbourhoods only within central part of traditional city of Kerman in Iran. The results illustrate, 75% ofneighbourhoods, area in the inner city of Kerman had clustered pattern, and it shows reduction in Moran's index is associated with disproportional distribution of density and increasing in Moran's I and Z-score have monotonic relation with more dense areas and clustered pattern. It may be more efficient for urban planner to focus on spatial autocorrelation to foster neighbourhood cohesion rather than emphasis on suburban area. It is recommended characteristics of historic neighbourhoods can be successfully linked to redevelopment plans toward making city smarter, and also people's quality of life can be related to the way that neighbourhoods' patterns are defined.


Author(s):  
Lin Lei ◽  
Anyan Huang ◽  
Weicong Cai ◽  
Ling Liang ◽  
Yirong Wang ◽  
...  

Lung cancer is the most commonly diagnosed cancer in China. The incidence trend and geographical distribution of lung cancer in southern China have not been reported. The present study explored the temporal trend and spatial distribution of lung cancer incidence in Shenzhen from 2008 to 2018. The lung cancer incidence data were obtained from the registered population in the Shenzhen Cancer Registry System between 2008 and 2018. The standardized incidence rates of lung cancer were analyzed by using the joinpoint regression model. The Moran’s I method was used for spatial autocorrelation analysis and to further draw a spatial cluster map in Shenzhen. From 2008 to 2018, the average crude incidence rate of lung cancer was 27.1 (1/100,000), with an annual percentage change of 2.7% (p < 0.05). The largest average proportion of histological type of lung cancer was determined as adenocarcinoma (69.1%), and an increasing trend was observed in females, with an average annual percentage change of 14.7%. The spatial autocorrelation analysis indicated some sites in Shenzhen as a high incidence rate spatial clustering area. Understanding the incidence patterns of lung cancer is useful for monitoring and prevention.


Sign in / Sign up

Export Citation Format

Share Document