scholarly journals Sensitivity of the Packet Level Performance Metrics to the Primary Channel Holding Time Distribution in Cognitive Radio Networks with VoIP-traffic

Author(s):  
Sandra Castellanos-Lopez ◽  
Felipe A. Cruz-Pérez ◽  
Genaro Hernandez-Valdez ◽  
Mario Rivero-Angeles
2018 ◽  
Vol 22 (12) ◽  
pp. 2435-2438 ◽  
Author(s):  
Yunfei Chen ◽  
Yue Wu ◽  
Jie Zhang ◽  
Ning Chen

Author(s):  
Lin Zhang ◽  
Guodong Zhao ◽  
Wenli Zhou ◽  
Liying Li ◽  
Gang Wu ◽  
...  

2021 ◽  
Vol 36 (1) ◽  
pp. 73-79
Author(s):  
Mahmoud Ali Ammar

In Cognitive Radio Networks (CRN), the main aim is to allow the secondary users (SUs) to identify the empty bands and use them to transmit or receive data opportunistically. Primary users (PUs) have the priority to use a channel, while the secondary users must vacant this channel once a primary user requests it. An attack known in cognitive radio networks as a Primary User Emulation Attack (PUEA) aims to prevent the SU from using the empty bands. In this paper, an analytical and experimental approach is presented to mitigate the PUEA. This approach is based on obtaining the Probability Density Functions (PDFs) of the received powers at the secondary users from malicious nodes and also from the primary transmitter in the cognitive network. Then, these obtained PDFs are used in Neyman-Pearson composite hypothesis test to measure the performance metrics (probability of false alarm and miss detection in the network). The results proved that the performance metrics were greatly influenced by the network area, where the secondary user is located, and the threshold value λ used in the decision rule. Also, there are boundaries for the λ choices that cannot be overtaken.


Author(s):  
Mohamed Hamid ◽  
Abbas Mohammed

Efficient use of the available licensed radio spectrum is becoming increasingly difficult as the demand and usage of the radio spectrum increases. This usage of the spectrum is not uniform within the licensed band but concentrated in certain frequencies of the spectrum while other parts of the spectrum are inefficiently utilized. In cognitive radio environments, the primary users are allocated licensed frequency bands while secondary cognitive users can dynamically allocate the empty frequencies within the licensed frequency band, according to their requested quality of service specifications. In this chapter, the authors investigate and assess the performance of MAC layer sensing schemes in cognitive radio networks. Two performance metrics are used to assess the performance of the sensing schemes: the available spectrum utilization and the idle channel search delay for reactive and proactive sensing schemes. In proactive sensing, the adapted and non-adapted sensing period schemes are also assessed. Simulation results show that proactive sensing with adapted periods provides superior performance at the expense of higher computational cost performed by network nodes.


Author(s):  
Mohamed Hamid ◽  
Niclas Björsell ◽  
Abbas Mohammed

In this chapter the authors propose a new approach for optimizing the sensing time and periodic sensing interval for energy detectors in cognitive radio networks. The optimization of the sensing time depends on maximizing the summation of the probability of right detection and transmission efficiency, while the optimization of periodic sensing interval is subject to maximizing the summation of transmission efficiency and captured opportunities. Since the optimum sensing time and periodic sensing interval are dependent on each other, an iterative approach to optimize them simultaneously is proposed and a convergence criterion is devised. In addition, the probability of detection, probability of false alarm, probability of right detection, transmission efficiency, and captured opportunities are taken as performance metrics for the detector and evaluated for various values of channel utilization factors and signal-to-noise ratios.


Electronics ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 895
Author(s):  
Shakeel Alvi ◽  
Riaz Hussain ◽  
Qadeer Hasan ◽  
Shahzad Malik

Cognitive radio networks have emerged to exploit optimally the scarcely-available radio spectrum resources to enable evolving 5G wireless communication systems. These networks tend to cater to the ever-increasing demands of higher data rates, lower latencies and ubiquitous coverage. By using the buffer-aided cooperative relaying, a cognitive radio network can enhance both the spectral efficiency and the range of the network; although, this could incur additional end-to-end delays. To mitigate this possible limitation of the buffer-aided relaying in the underlay cognitive network, a virtual duplex multi-hop scheme, referred as buffer-aided multi-hop relaying, is proposed, which improves throughput and reduces end-to-end delays while keeping the outage probability to a minimum as well. This scheme simultaneously takes into account the inter-relay interference and the interference to the primary network. The proposed scheme is modeled as a Markov chain, and Monte Carlo simulations under various scenarios are conducted to evaluate several key performance metrics such as throughput, outage probability, and average packet delay. The results show that the proposed scheme outperforms many non-buffer-aided relaying schemes in terms of outage performance. When compared with other buffer-aided relaying schemes such as max-max, max-link, and buffer-aided relay selection with reduced packet delay, the proposed scheme demonstrated better interference mitigation without compromising the delay performance as well.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7012
Author(s):  
Tian Yang ◽  
Moez Esseghir ◽  
Lyes Khoukhi ◽  
Su Pan

Energy efficiency (EE) is of great concern in cognitive radio networks since the throughput and energy consumption of secondary users (SUs) vary with the sensing time. However, the conditions of the detection probability and false alarm probability should be respected to better protect primary users (PUs) and to improve the sensing performance of SUs. Additionally, the PUs’ minimum averaged power provision should also be regarded as a key problem of interactive linking to SUs. Therefore, an integrated design between the PU and SUs is desired for the coordination of the whole cognitive radio system, especially regarding the satisfaction of EE and performance metrics. This study formulates sensing constraints in a unified way and calculates the minimum SNR of SUs, based on which the essential PU power provision is computed. Furthermore, EE is proved as a decreasing function with the PU’s active ratio, where the maximum EE is obtained corresponding to the minimum QoS requirements of the sensing process. Hence, a bisection-based method is proposed to maximize EE, which is considered as a concave function of SUs’ sensing time and has only one unique optimum. EE’s optimization was analyzed under different fusion rules for diverse SNR conditions. The optimum was also studied with sensing performance targets for various cases of PU power provision.


Sign in / Sign up

Export Citation Format

Share Document