scholarly journals Interaction of precipitation with tree canopy increases nutrient input

Author(s):  
Gian Carlos Poleto ◽  
Dione Richer Momolli ◽  
Mauro Valdir Schumacher ◽  
Aline Aparecida Ludvichak ◽  
Kristiana Fiorentin dos Santos ◽  
...  

Given that atmospheric deposition is the first source of nutrient input into forest ecosystems, and that the precipitation partition serves as a nutritional source mainly when there is an interaction with the forest canopy, the objective of the present study was to quantify the nutrients input into rainfall, throughfall and stemflow in Eucalyptus urophylla stands with partial exclusion (E) and without exclusion (WE) of throughfall. The experiment was conducted in the northeast of the state of Paraná-Brazil, in the municipality of Telêmaco Borba. The partial precipitation exclusion system (E) is formed by a system of gutters that conduct 30% of throughfall out of the experiment. The nutrient input in rainfall was 55.7 kg ha-1 yr-1, while the sum of throughfall and stemflow was 64.1 kg ha-1 yr-1 in treatment (WE) and 39.8 kg ha-1 yr-1 in treatment (E). Interaction with the canopy of the trees enriched the rainfall with nutrients, mainly the elements potassium and chlorine, due to leaching of the vegetal tissues. The reduction of the water treatment system in partial exclusion of precipitation (E) reduced representative nutrient input. Although stemflow represents on average only 2.6% of the water volume, it is responsible for 6.7% of the amount of nutrients in relation to precipitation. Therefore, stemflow cannot be neglected in the balance of nutrient cycling. With a rotation of 7 years, the application of significant amounts of fertilizers can be avoided, considering the inputs of 449 and 277 kg ha-1year-1. Keywords: nutrient cycling, stemflow, throughfall.

2019 ◽  
Vol 11 (6) ◽  
pp. 351
Author(s):  
Dione Richer Momolli ◽  
Mauro Valdir Schumacher ◽  
Marcio Viera ◽  
Aline Aparecida Ludvichak ◽  
Claudiney do Couto Guimarães ◽  
...  

Atmospheric deposition is responsible for the ions input, which may be due to dust and aerosols and rainfall. During rainfall a portion is intercepted by the tree canopy and returned to the atmosphere by evapotranspiration, another part crosses the forest canopy called throughfall and stemflow. The objective of the present work was to quantify the nutrient input of the incident rainfall, throughfall, stemflow and canopy enrichment in an Eucalyptus dunnii plantation, established in soil with low natural fertility. Four plots of 20 m × 21 m were demarcated. The rainfall consists 3 rain collectors in an open área. The throughfall consisted 3 collectors per plot in the line, interlining and diagonal positions of the trees. The stemflow consisted in the installation of three systems per plot formed by a hose in the trunk of the tree that leads the solution to a reservoir. Through rainfall, 29.5 kg ha-1 of nutrients were supplied. When we consider the sum of the throughfall and stemflow, the amount of nutrients was 77.6 kg ha-1. After interaction with the tree canopy 48.2 kg ha-1 of nutrients were incorporated. Potassium showed the highest enrichment: 607%. The average nutrient enrichment was 163%. The input of N and K via incident rainfall was 1.8 and 3.1 kg ha-1. Considering the fertilization described in the methodology, this contributed amount represents 6.1 and 2.6% of the total. If we consider the rotation of 7 years for Eucalyptus dunnii, the contribution at the end of rotation represents 42.4 and 18% of N and K2O. The interaction with the canopy of Eucalyptus dunnii enriches the rainwater with nutrients making the solution with a more basic character.


2019 ◽  
Vol 11 (5) ◽  
pp. 372
Author(s):  
Dione Richer Momolli ◽  
Mauro Valdir Schumacher ◽  
Márcio Viera ◽  
Aline Aparecida Ludvichak ◽  
Claudiney do Couto Guimarães ◽  
...  

Atmospheric deposition is responsible for the ions input, which may be due to dust and aerosols and rainfall. During rainfall a portion is intercepted by the tree canopy and returned to the atmosphere by evapotranspiration, another part crosses the forest canopy called throughfall and stemflow. The objective of the study was to quantify incident rainfall partitioning into throughfall, stemflow and canopy interception in a Eucalyptus dunnii stand in southern Brazil. Four plots of 20 m × 21 m were demarcated. The rainfall consists 3 rain collectors in an open area. The throughfall consisted 3 collectors per plot in the line, interlining and diagonal positions of the trees. The stemflow consisted in the installation of three systems per plot formed by a hose in the trunk of the tree that leads the solution to a reservoir. The adjustment of the throughfall, stemflow and canopy interception in function of the incident precipitation was of 99%, 90% and 52%. As the volume of rainfall increases, the coefficient of variation decreases. The annual rainfall was 1903 mm, with a canopy interception average of 8.9%.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 553d-553
Author(s):  
C.R. Unrath

Historically, most airblast chemical applications to apple orchards used a single “average” water volume, resulting in variability of coverage with tree size and also the greatest variable in chemical thinning. This coverage variability can be eliminated by properly quantifying the tree canopy, as tree row volume (TRV), and relating that volume to airblast water rate for adequate coverge. Maximum typical tree height, cross-row limb spread, and between-row spacing are used to quantify the TRV. Further refinement is achieved by adjusting the water volume for tree canopy density. The North Carolina TRV model allows a density adjustment from 0.7 gal/1000 ft3 of TRV for young, very open tree canopies to 1.0 gal/1000 ft3 of TRV for large, thick tree canopies to deliver a full dilute application for maximum water application (to the point of run-off). Most dilute pesticide applications use 70% of full dilute to approach the point of drip (pesticide dilute) to not waste chemicals and reduce non-target environmental exposure. From the “chemical load” (i.e., lb/acre) calculated for the pesticide dilute application, the proper chemical load for lower (concentrate) water volumes can be accurately determined. Another significant source of variability is thinner application response is spray distribution to various areas of the tree. This variability is related to tree configuration, light, levels, fruit set, and natural thinning vs. the need for chemical thinning. Required water delivery patterns are a function of tree size, form, spacing, and density, as well as sprayer design (no. of nozzles and fan size). The TRV model, density adjustments, and nozzle patterns to effectively hit the target for uniform crop load will be addressed.


Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 433
Author(s):  
Xiaolan Huang ◽  
Weicheng Wu ◽  
Tingting Shen ◽  
Lifeng Xie ◽  
Yaozu Qin ◽  
...  

This research was focused on estimation of tree canopy cover (CC) by multiscale remote sensing in south China. The key aim is to establish the relationship between CC and woody NDVI (NDVIW) or to build a CC-NDVIW model taking northeast Jiangxi as an example. Based on field CC measurements, this research used Google Earth as a complementary source to measure CC. In total, 63 sample plots of CC were created, among which 45 were applied for modeling and the remaining 18 were employed for verification. In order to ascertain the ratio R of NDVIW to the satellite observed NDVI, a 20-year time-series MODIS NDVI dataset was utilized for decomposition to obtain the NDVIW component, and then the ratio R was calculated with the equation R = (NDVIW/NDVI) *100%, respectively, for forest (CC >60%), medium woodland (CC = 25–60%) and sparse woodland (CC 1–25%). Landsat TM and OLI images that had been orthorectified by the provider USGS were atmospherically corrected using the COST model and used to derive NDVIL. R was multiplied for the NDVIL image to extract the woody NDVI (NDVIWL) from Landsat data for each of these plots. The 45 plots of CC data were linearly fitted to the NDVIWL, and a model with CC = 103.843 NDVIW + 6.157 (R2 = 0.881) was obtained. This equation was applied to predict CC at the 18 verification plots and a good agreement was found (R2 = 0.897). This validated CC-NDVIW model was further applied to the woody NDVI of forest, medium woodland and sparse woodland derived from Landsat data for regional CC estimation. An independent group of 24 measured plots was utilized for validation of the results, and an accuracy of 83.0% was obtained. Thence, the developed model has high predictivity and is suitable for large-scale estimation of CC using high-resolution data.


2013 ◽  
Vol 17 (10) ◽  
pp. 3815-3826 ◽  
Author(s):  
C. T. Chang ◽  
S. P. Hamburg ◽  
J. L. Hwong ◽  
N. H. Lin ◽  
M. L. Hsueh ◽  
...  

Abstract. Tropical cyclones (typhoons/hurricanes) have major impacts on the biogeochemistry of forest ecosystems, but the stochastic nature and the long intervals between storms means that there are limited data on their effects. We characterised the impacts of 14 typhoons over six years on hydrochemistry of a subtropical forest plantation in Taiwan, a region experiencing frequent typhoons. Typhoons contributed 1/3 of the annual rainfall on average, but ranged from 4 to 55%. The stochastic nature of annual typhoon related precipitation poses a challenge with respect to managing the impacts of these extreme events. This challenge is exacerbated by the fact that typhoon-related rainfall is not significantly correlated with wind velocity, the current focus of weather forecasts. Thus, little advance warning is provided for the hydrological impacts of these storms. The typhoons we studied contributed approximately one third of the annual input and output of most nutrients (except nitrogen) during an average 9.5 day yr−1 period, resulting in nutrient input/output rates an order of magnitude greater than during non-typhoon months. Nitrate output balanced input during the non-typhoon period, but during the typhoon period an average of 10 kg ha−1 yr−1 nitrate was lost. Streamwater chemistry exhibited similarly high variability during typhoon and non-typhoon periods and returned to pre-typhoon levels one to three weeks following each typhoon. The streamwater chemistry appears to be very resilient in response to typhoons, resulting in minimal loss of nutrients.


2007 ◽  
Vol 31 (2) ◽  
pp. 339-346 ◽  
Author(s):  
Fabiano de Carvalho Balieiro ◽  
Avílio Antônio Franco ◽  
Renildes Lúcio Ferreira Fontes ◽  
Luiz Eduardo Dias ◽  
Eduardo Francia Carneiro Campello ◽  
...  

The interception of the rainfall by the forest canopy has great relevance to the nutrient geochemistry cycle in low fertility tropical soils under native or cultivated forests. However, little is known about the modification of the rainfall water quality and hydrological balance after interception by the canopies of eucalyptus under pure and mixed plantations with leguminous species, in Brazil. Samples of rainfall (RF), throughfall (TF) and stemflow (SF) were collected and analyzed in pure plantations of mangium (nitrogen fixing tree -NFT), guachapele (NFT) and eucalyptus (non-nitrogen fixing tree -NNFT) and in a mixed stand of guachapele and eucalyptus in Seropédica, State of Rio de Janeiro, Brazil. Nine stemflow collectors (in selected trees) and nine pluviometers were randomly disposed under each stand and three pluviometers were used to measure the incident rainfall during 5.5 months. Mangium conveyed 33.4% of the total rainfall for its stem. An estimative based on corrections for the average annual precipitation (1213 mm) indicated that the rainfall's contribution to the nutrient input (kg ha-1) was about 8.42; 0.95; 19.04; 6.74; 4.72 and 8.71 kg ha-1 of N-NH4+, P, K+, Ca+2, Mg+2 and Na+, respectively. Throughfall provided the largest contributions compared to the stemflow nutrient input. The largest inputs of N-NH4+ (15.03 kg ha-1) and K+ (179.43 kg ha-1) were observed under the guachapele crown. Large amounts of Na+ denote a high influence of the sea. Mangium was the most adapted species to water competitiveness. Comparatively to pure stand of eucalyptus, the mixed plantation intensifies the N, Ca and Mg leaching by the canopy, while the inputs of K and P were lower under these plantations.


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1542
Author(s):  
Nadezhda V. Genikova ◽  
Viktor N. Mamontov ◽  
Alexander M. Kryshen ◽  
Vladimir A. Kharitonov ◽  
Sergey A. Moshnikov ◽  
...  

Bilberry spruce forests are the most widespread forest type in the European boreal zone. Limiting the clear-cuttings size leads to fragmentation of forest cover and the appearance of large areas of ecotone complexes, composed of forest (F), a transition from forest to the cut-over site under tree canopy (FE), a transition from forest to the cut-over site beyond tree canopy (CE), and the actual clear-cut site (C). Natural regeneration of woody species (spruce, birch, rowan) in the bilberry spruce stand—clear-cut ecotone complex was studied during the first decade after logging. The effects produced by the time since cutting, forest edge aspect, and the ground cover on the emergence and growth of trees and shrubs under forest canopy and openly in the clear-cut were investigated. Estimating the amount and size of different species in the regeneration showed FE and CE width to be 8 m—roughly half the height of first-story trees. Typical forest conditions (F) feature a relatively small amount of regenerating spruce and birch. The most favorable conditions for natural regeneration of spruce in the clear-cut—mature bilberry spruce stand ecotone are at the forest edge in areas of transition both towards the forest and towards the clear-cut (FE and CE). Clear-cut areas farther from the forest edge (C) offer an advantage to regenerating birch, which grows densely and actively in this area.


2018 ◽  
Vol 13 (3) ◽  
pp. 461-468
Author(s):  
Tomáš Kučera ◽  
Veronika Hanušová

Abstract This paper presents the results of the first phase of research that evaluates options for the optimization of waste-water management during water treatment. The research was conducted in a specific treatment plant, with surface-water sources, to verify the option of recirculating part of the sludge-water back to the beginning of the technological line and mixing this with a portion of raw water. An evaluation of risk factors is necessary for such treatment, as they could render the recirculation of the backwashing water impossible. The motivation behind this research lies in the potential savings of operating costs, particularly the costs of pumping raw water from a watercourse. This research evaluated data regarding the quality of both raw and processed water, focusing on six indicators – turbidity, color, chemical oxygen demand, and concentrations of aluminum, iron and manganese. The evaluation established through these factors indicates that the plan for returning a certain volume of sludge-water back into the process is possible and should cause no problems regarding the quality of drinking water produced. Based on the results of the first phase of this research, it is possible to recirculate up to 6% of overall raw-water volume back into the process.


Sign in / Sign up

Export Citation Format

Share Document