Optimal seeding rate for organic production of lentil in the northern Great Plains

2009 ◽  
Vol 89 (6) ◽  
pp. 1089-1097 ◽  
Author(s):  
J M Baird ◽  
S J Shirtliffe ◽  
F L Walley

Organic lentil (Lens culinaris Medik.) producers must rely upon the recommended rate for conventional production of 130 plants m-2, but this seeding rate may not be suitable, as organic and conventional production systems differ in management and inputs. The objective of this study was to determine an optimal seeding rate for organic production of lentil considering a number of factors, including yield, weed suppression, soil nitrogen and phosphorus concentrations, plant uptake of phosphorus, and economic return. A field experiment was conducted for 4 site-years at locations near Saskatoon, SK. Treatments included seeding rates of 15, 38, 94, 235 and 375 seeds m-2. Seed yield increased with increasing seeding rate up to 1290 kg ha-1. Weed biomass was reduced by 59% at the highest seeding rate as compared with the lowest seeding rate. Post-harvest soil phosphorus and nitrogen levels were similar between seeding rate treatments. Economic return was maximized at $952 ha-1 at the highest density of 229 plants m-2, achieved with a seeding rate of 375 seeds m-2. Organic farmers should increase the seeding rate of lentil to achieve a plant density of 229 plants m-2 to increase profitability and provide better weed suppression.Key words: Lentil, organic, seeding rate, weed suppression, economic return

2009 ◽  
Vol 89 (3) ◽  
pp. 455-464 ◽  
Author(s):  
J. M. Baird ◽  
F. L. Walley ◽  
S. J. Shirtliffe

Seeding rates have not been established for organic production of field pea in the northern Great Plains and producers must rely upon a recommended target stand of 88 plants m-2 for conventional production of this crop. This seeding rate may not be suitable as the two systems differ in the use of inputs and in pest management. The objective of this study was to determine an optimal seeding rate for organic production of field pea considering a number of agronomic factors and profitability. Field sites were established using a randomized complete block design with increasing seeding rates, summerfallow and green manure treatments. Seed yield increased up to 1725 kg ha-1 with increasing seeding rate. Weed biomass decreased with increasing seeding rate by up to 68%. Post-harvest soil phosphorus levels and soil water storage did not change consistently between treatments. Post-harvest soil inorganic nitrogen (N), however, was higher for the summerfallow and green manure treatments than for the seeding rate treatments. Field pea reached a maximum economic return at a seeding rate of 200 seeds m-2 and an actual plant density of 120 plants m-2. Organic farmers should increase the seeding rate of field pea to increase returns and provide better weed suppression. Key words: Pea (field), organic, seeding rate, weed suppression, profit, soil N


2004 ◽  
Vol 19 (03) ◽  
pp. 152-158 ◽  
Author(s):  
Elwin G. Smith ◽  
M. Jill Clapperton ◽  
Robert E. Blackshaw

2017 ◽  
Vol 27 (2) ◽  
pp. 235-239
Author(s):  
Nagehan D. Köycü ◽  
John E. Stenger ◽  
Harlene M. Hatterman-Valenti

Elemental sulfur is commonly applied for powdery mildew (Erysiphe necator) protection on winegrape (Vitis sp.). The product may be used in a diversified, integrated disease management system to help prevent fungicide resistance to products with other modes of action. Additionally, sulfur may be used as a control option in organic systems. Applications of sulfur have been known to cause phytotoxic injury to susceptible winegrape cultivars, particularly those stemming from fox grape (Vitis labrusca) parentage. To improve recommendations to producers in the northern Great Plains region of the United States, a comparison of injury incidence and severity, as well as effects on yield characteristics was undertaken for 13 regional cultivars exposed to three sulfur rates (0, 2.4, and 4.8 lb/acre a.i.) at a North Dakota State University Research Station near Absaraka, ND. Overall, four cultivars (Bluebell, Baltica, Sabrevois, and King of the North) of the 13 cultivars tested showed phytotoxic symptoms. Injury severity and incidence of these cultivars differed between years and across rates. ‘Bluebell’ showed consistent and severe sulfur injury symptoms. Injury to the other three susceptible cultivars tended to vary by the given environment, with King of the North generally showing the lowest injury response. Injury symptoms were not found to be associated with the overall yield or cluster weight. Results suggest that alternative spray programs that exclude sulfur-based fungicides should be recommended for ‘Bluebell’, ‘Baltica’, ‘Sabrevois’, and ‘King of the North’, whereas sulfur-based fungicides may be applied to ‘Alpenglow’, ‘ES 12-6-18’, ‘Frontenac’, ‘Frontenac Gris’, ‘La Crescent’, ‘Marquette’, ‘Somerset Seedless’, ‘St. Croix’, and ‘Valiant’. Observations on fruit ripening in 2014 suggest that future research is needed to determine if a reduction of fruit quality may occur in some seasons with repeated sulfur applications or with successive annual sulfur applications for susceptible cultivars if used in an organic production system.


2018 ◽  
Vol 183 (6) ◽  
pp. 192-192 ◽  
Author(s):  
Fernanda M Tahamtani ◽  
Lena K Hinrichsen ◽  
Anja B Riber

The aim of this study was to survey and report the walking ability in broilers housed in both conventional and organic production systems in Denmark. To this end, the authors assessed the walking ability, by using the Bristol scale, in 31 conventional broiler flocks and in 29 organic broiler flocks distributed across Denmark. In addition, assessment of contact dermatitis, leg abnormalities, scratches and plumage cleanliness, as well as postmortem analysis of tibial dyschondroplasia, was performed in conventional broilers. The survey found a prevalence of 77.4 per cent of impaired walking ability (gait score (GS) >0) in conventional broilers and 38.1 per cent in organic broilers. The prevalence of severe lameness (GS >2) was 5.5 per cent and 2.5 per cent for conventional and organic broilers, respectively. The prevalence of tibial dyschondroplasia in conventional broilers was 4.7 per cent. The results on other welfare indicators are also presented for conventional broilers. The results from the present and previous surveys indicate that the prevalence of impaired walking ability in broiler chickens in the Danish conventional production system is high, but the severity has been steadily decreasing over the last 19 years. Furthermore, the results from the survey of organic broilers suggest that lameness is less prevalent and severe in this system relative to conventional production.


2007 ◽  
Vol 22 (1) ◽  
pp. 30-40 ◽  
Author(s):  
Sean L. Swezey ◽  
Polly Goldman ◽  
Janet Bryer ◽  
Diego Nieto

AbstractThree different cotton production strategies [certified organic, conventionally grown, and reduced insecticide input/integrated pest management (IPM)] were compared in field-sized replicates in the Northern San Joaquin Valley (NSJV), California, from 1996 to 2001. We measured arthropod abundance, plant development, plant density, pesticide use, cost of production, lint quality and yields in the three treatments. Overall pest abundance was low, and a key cotton fruit pest,Lygus hesperusKnight, known as the western tarnished plant bug (WTPB), did not exceed action thresholds in any treatment. Organic fields had significantly more generalist insect predators than conventional fields during at least one seasonal interval in all but one year. While there were no significant differences in plant development, plant densities at harvest were lower in organic than conventional and IPM fields. Some measures of lint quality (color grade and bale leaf rating) were also lower in the organic treatment than in either the IPM or the conventional treatments. Synthetic insecticides, not allowed for use in organic production, were also used in significantly lower quantities in the IPM fields than in the conventional fields. Over the 6-year period of the study, IPM fields averaged 0.63 kg of active ingredient (AI) insecticide per hectare, as opposed to 1.02 kg AI ha−1for conventional fields, a reduction of 38%. Costs of production per bale were on average 37% higher for organic than for conventional cotton. This cost differential was primarily due to greater hand-weeding costs and significantly lower yields in organic cotton, compared with either IPM or conventional cotton. Average 6-year yields were 4.4, 5.4 and 6.7 bales ha−1for organic, IPM and conventional treatments, respectively. Low world cotton prices and the lack of premium prices for organic cotton are the primary obstacles for continued production in the NSJV.


Sign in / Sign up

Export Citation Format

Share Document