Dryland corn yield affected by row configuration and seeding rate in the northern Great Plains

2012 ◽  
Vol 67 (1) ◽  
pp. 32-41 ◽  
Author(s):  
B. L. Allen
2017 ◽  
Vol 109 (2) ◽  
pp. 524-531 ◽  
Author(s):  
Lucas A. Haag ◽  
Johnathon D. Holman ◽  
Joel Ransom ◽  
Tom Roberts ◽  
Scott Maxwell ◽  
...  

2009 ◽  
Vol 89 (6) ◽  
pp. 1089-1097 ◽  
Author(s):  
J M Baird ◽  
S J Shirtliffe ◽  
F L Walley

Organic lentil (Lens culinaris Medik.) producers must rely upon the recommended rate for conventional production of 130 plants m-2, but this seeding rate may not be suitable, as organic and conventional production systems differ in management and inputs. The objective of this study was to determine an optimal seeding rate for organic production of lentil considering a number of factors, including yield, weed suppression, soil nitrogen and phosphorus concentrations, plant uptake of phosphorus, and economic return. A field experiment was conducted for 4 site-years at locations near Saskatoon, SK. Treatments included seeding rates of 15, 38, 94, 235 and 375 seeds m-2. Seed yield increased with increasing seeding rate up to 1290 kg ha-1. Weed biomass was reduced by 59% at the highest seeding rate as compared with the lowest seeding rate. Post-harvest soil phosphorus and nitrogen levels were similar between seeding rate treatments. Economic return was maximized at $952 ha-1 at the highest density of 229 plants m-2, achieved with a seeding rate of 375 seeds m-2. Organic farmers should increase the seeding rate of lentil to achieve a plant density of 229 plants m-2 to increase profitability and provide better weed suppression.Key words: Lentil, organic, seeding rate, weed suppression, economic return


2009 ◽  
Vol 89 (3) ◽  
pp. 455-464 ◽  
Author(s):  
J. M. Baird ◽  
F. L. Walley ◽  
S. J. Shirtliffe

Seeding rates have not been established for organic production of field pea in the northern Great Plains and producers must rely upon a recommended target stand of 88 plants m-2 for conventional production of this crop. This seeding rate may not be suitable as the two systems differ in the use of inputs and in pest management. The objective of this study was to determine an optimal seeding rate for organic production of field pea considering a number of agronomic factors and profitability. Field sites were established using a randomized complete block design with increasing seeding rates, summerfallow and green manure treatments. Seed yield increased up to 1725 kg ha-1 with increasing seeding rate. Weed biomass decreased with increasing seeding rate by up to 68%. Post-harvest soil phosphorus levels and soil water storage did not change consistently between treatments. Post-harvest soil inorganic nitrogen (N), however, was higher for the summerfallow and green manure treatments than for the seeding rate treatments. Field pea reached a maximum economic return at a seeding rate of 200 seeds m-2 and an actual plant density of 120 plants m-2. Organic farmers should increase the seeding rate of field pea to increase returns and provide better weed suppression. Key words: Pea (field), organic, seeding rate, weed suppression, profit, soil N


Crop Science ◽  
2018 ◽  
Vol 58 (6) ◽  
pp. 2633-2643 ◽  
Author(s):  
Zakir Hossain ◽  
Eric N. Johnson ◽  
Robert E. Blackshaw ◽  
Kui Liu ◽  
Arlen Kapiniak ◽  
...  

2014 ◽  
Vol 13 (1) ◽  
pp. CM-2014-0009-RS ◽  
Author(s):  
Alex D. Bich ◽  
Cheryl L. Reese ◽  
Ann C. Kennedy ◽  
David E. Clay ◽  
Sharon A. Clay

Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 240
Author(s):  
Graham R. S. Collier ◽  
Dean M. Spaner ◽  
Robert J. Graf ◽  
Brian L. Beres

Ultra-early seeding of spring wheat (Triticum aestivum L.) on the northern Great Plains can increase grain yield and grain yield stability compared to current spring wheat planting systems. Field trials were conducted in western Canada from 2015 to 2018 to evaluate the impact of optimal agronomic management on grain yield, quality, and stability in ultra-early wheat seeding systems. Four planting times initiated by soil temperature triggers were evaluated. The earliest planting was triggered when soils reached 0–2.5 °C at a 5 cm depth, with the subsequent three plantings completed at 2.5 °C intervals up to soil temperatures of 10 °C. Two spring wheat lines were seeded at each planting date at two seeding depths (2.5 and 5 cm), and two seeding rates (200 and 400 seeds m−2). The greatest grain yield and stability occurred from combinations of the earliest seeding dates, high seeding rate, and shallow seeding depth; wheat line did not influence grain yield. Grain protein content was greater at later seeding dates; however, the greater grain yield at earlier seeding dates resulted in more protein production per unit area. Despite extreme ambient air temperatures below 0 °C after planting, plant survival was not reduced at the earliest seeding dates. Planting wheat as soon as feasible after soil temperatures reach 0 °C, and prior to soils reaching 7.5–10 °C, at an optimal seeding rate and shallow seeding depth increased grain yield and stability compared to current seeding practices. Adopting ultra-early wheat seeding systems on the northern Great Plains will lead to additional grain yield benefits as climate change continues to increase annual average growing season temperatures.


2008 ◽  
Vol 100 (5) ◽  
pp. 1339-1346 ◽  
Author(s):  
Bryan K. Hanson ◽  
Burton L. Johnson ◽  
Robert A. Henson ◽  
Neil R. Riveland

2021 ◽  
Author(s):  
Thandiwe Nleya ◽  
Dwarika Bhattarai ◽  
Phillip Alberti

Camelina (Camelina sativa L. Crantz,) a new oilseed crop in the Brassicaceae family has favorable agronomic traits and multiple food and industrial uses. Appropriate production practices for optimal camelina yield in temperate climates of North America are lacking. This study investigated the response of camelina seed yield and quality, and agronomic traits to applied N (5 levels, 0, 28, 56, 84, 140 kg ha−1) and four seeding rates (4.5, 9, 13, 17.5 kg ha−1). Separate experiments were conducted at four environments (site-years) for N and three environments for seeding rate in South Dakota. In three of the four environments, the highest N rate increased seed yield by 30 to 60% compared to the control. The increase in seed yield with increasing N rate was linear in a high yielding environment and quadratic in a low yielding environment. Increasing seeding rate increased plant stands but had inconsistent impacts on seed yield depending on location and year. Seed oil concentration ranged from 149 to 350 g kg−1, was inversely related to N rate but was not influenced by seeding rate.


Sign in / Sign up

Export Citation Format

Share Document