Profitability and risk of organic production systems in the northern Great Plains

2004 ◽  
Vol 19 (03) ◽  
pp. 152-158 ◽  
Author(s):  
Elwin G. Smith ◽  
M. Jill Clapperton ◽  
Robert E. Blackshaw
2009 ◽  
Vol 89 (6) ◽  
pp. 1089-1097 ◽  
Author(s):  
J M Baird ◽  
S J Shirtliffe ◽  
F L Walley

Organic lentil (Lens culinaris Medik.) producers must rely upon the recommended rate for conventional production of 130 plants m-2, but this seeding rate may not be suitable, as organic and conventional production systems differ in management and inputs. The objective of this study was to determine an optimal seeding rate for organic production of lentil considering a number of factors, including yield, weed suppression, soil nitrogen and phosphorus concentrations, plant uptake of phosphorus, and economic return. A field experiment was conducted for 4 site-years at locations near Saskatoon, SK. Treatments included seeding rates of 15, 38, 94, 235 and 375 seeds m-2. Seed yield increased with increasing seeding rate up to 1290 kg ha-1. Weed biomass was reduced by 59% at the highest seeding rate as compared with the lowest seeding rate. Post-harvest soil phosphorus and nitrogen levels were similar between seeding rate treatments. Economic return was maximized at $952 ha-1 at the highest density of 229 plants m-2, achieved with a seeding rate of 375 seeds m-2. Organic farmers should increase the seeding rate of lentil to achieve a plant density of 229 plants m-2 to increase profitability and provide better weed suppression.Key words: Lentil, organic, seeding rate, weed suppression, economic return


2017 ◽  
Vol 27 (2) ◽  
pp. 235-239
Author(s):  
Nagehan D. Köycü ◽  
John E. Stenger ◽  
Harlene M. Hatterman-Valenti

Elemental sulfur is commonly applied for powdery mildew (Erysiphe necator) protection on winegrape (Vitis sp.). The product may be used in a diversified, integrated disease management system to help prevent fungicide resistance to products with other modes of action. Additionally, sulfur may be used as a control option in organic systems. Applications of sulfur have been known to cause phytotoxic injury to susceptible winegrape cultivars, particularly those stemming from fox grape (Vitis labrusca) parentage. To improve recommendations to producers in the northern Great Plains region of the United States, a comparison of injury incidence and severity, as well as effects on yield characteristics was undertaken for 13 regional cultivars exposed to three sulfur rates (0, 2.4, and 4.8 lb/acre a.i.) at a North Dakota State University Research Station near Absaraka, ND. Overall, four cultivars (Bluebell, Baltica, Sabrevois, and King of the North) of the 13 cultivars tested showed phytotoxic symptoms. Injury severity and incidence of these cultivars differed between years and across rates. ‘Bluebell’ showed consistent and severe sulfur injury symptoms. Injury to the other three susceptible cultivars tended to vary by the given environment, with King of the North generally showing the lowest injury response. Injury symptoms were not found to be associated with the overall yield or cluster weight. Results suggest that alternative spray programs that exclude sulfur-based fungicides should be recommended for ‘Bluebell’, ‘Baltica’, ‘Sabrevois’, and ‘King of the North’, whereas sulfur-based fungicides may be applied to ‘Alpenglow’, ‘ES 12-6-18’, ‘Frontenac’, ‘Frontenac Gris’, ‘La Crescent’, ‘Marquette’, ‘Somerset Seedless’, ‘St. Croix’, and ‘Valiant’. Observations on fruit ripening in 2014 suggest that future research is needed to determine if a reduction of fruit quality may occur in some seasons with repeated sulfur applications or with successive annual sulfur applications for susceptible cultivars if used in an organic production system.


2009 ◽  
Vol 89 (3) ◽  
pp. 455-464 ◽  
Author(s):  
J. M. Baird ◽  
F. L. Walley ◽  
S. J. Shirtliffe

Seeding rates have not been established for organic production of field pea in the northern Great Plains and producers must rely upon a recommended target stand of 88 plants m-2 for conventional production of this crop. This seeding rate may not be suitable as the two systems differ in the use of inputs and in pest management. The objective of this study was to determine an optimal seeding rate for organic production of field pea considering a number of agronomic factors and profitability. Field sites were established using a randomized complete block design with increasing seeding rates, summerfallow and green manure treatments. Seed yield increased up to 1725 kg ha-1 with increasing seeding rate. Weed biomass decreased with increasing seeding rate by up to 68%. Post-harvest soil phosphorus levels and soil water storage did not change consistently between treatments. Post-harvest soil inorganic nitrogen (N), however, was higher for the summerfallow and green manure treatments than for the seeding rate treatments. Field pea reached a maximum economic return at a seeding rate of 200 seeds m-2 and an actual plant density of 120 plants m-2. Organic farmers should increase the seeding rate of field pea to increase returns and provide better weed suppression. Key words: Pea (field), organic, seeding rate, weed suppression, profit, soil N


2021 ◽  
Vol 64 (4) ◽  
pp. 1185-1196
Author(s):  
C. Alan Rotz ◽  
Senorpe Asem-Hiablie ◽  
Erin L. Cortus ◽  
Mindy J. Spiehs ◽  
Shafiqur Rahman ◽  
...  

HighlightsThe Integrated Farm System Model appropriately represented average emission rates measured in corn production.Compared to the use of feedlot manure, application of bedded pack manure generally increased N and P losses.Compared to inorganic fertilizer use, cattle manure increased soluble P loss while reducing GHG emission.Production and environmental differences among production systems were similar under recent and future climates.Abstract. Nitrogen (N), phosphorus (P), and carbon (C) emissions from livestock systems have become important regional, national, and international concerns. Our objective was to use process-level simulation to explore differences among manure and inorganic fertilizer treatments in a corn production system used to feed finishing cattle in the Northern Great Plains region of the U.S. Our analysis included model assessment, simulation to compare treatments under recent climate, and comparisons using projected midcentury climate. The Integrated Farm System Model was evaluated in representing the performance and nutrient losses of corn production using cattle manure without bedding, manure with bedding, urea, and no fertilization treatments. Two-year field experiments conducted near Clay Center, Nebraska; Brookings, South Dakota; and Fargo, North Dakota provided observed emission data following these treatments. Means of simulated emission rates of methane, ammonia, and nitrous oxide were generally similar to those observed from field-applied manure or urea fertilizer. Simulation of corn production systems over 25 years of recent climate showed greater soluble P runoff with use of feedlot and bedded manure compared to use of inorganic fertilizers, but life-cycle fossil energy use and greenhouse gas emission were decreased. Compared to feedlot manure, application of bedded pack manure generally increased N and P losses in corn production by retaining more N in manure removed from a bedded housing facility and through increased runoff because a large portion of the stover was removed from the cornfield for use as bedding material. Simulation of these treatments using projected midcentury climate indicated a trend toward a small increase in simulated grain production in the Dakotas and a small decrease for irrigated corn in Nebraska. Climate differences affected the three production systems similarly, so production and environmental impact differences among the fertilization systems under future climate were similar to those obtained under recent climate. Keywords: Climate change, Greenhouse gas, Integrated Farm System Model, Nutrient losses.


Weed Science ◽  
1991 ◽  
Vol 39 (1) ◽  
pp. 83-90 ◽  
Author(s):  
William W. Donald ◽  
Tony Prato

High herbicide costs and uncertainty about annual weed control at planting have limited adoption of no-till spring wheat production systems in the northern Great Plains. Chlorsulfuron, metsulfuron, and CGA-131036 at 10 to 20 g ai ha–1plus nonionic surfactant generally controlled both emerged kochia and wild mustard equally well (>80%) whether or not combined with glyphosate at 250 g ha–1plus nonionic surfactant. In two of three trials persistent phytotoxic residues of these sulfonylurea herbicides in soil controlled both weeds better in midseason and early summer 1 yr after treatment than did glyphosate, which has only foliar activity. While the absolute net returns of different treatments varied among herbicides, relative net returns were insensitive to changes in either herbicide or wheat price. Herbicide use tended to boost net returns for no-till spring wheat in years with good weather but depressed net returns in a drought year. Chlorsulfuron at 10 and 20 g ha–1increased net returns in all three trials. Metsulfuron and combinations of either metsulfuron or chlorsulfuron with glyphosate had variable effects on net returns.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Olga S. Walsh ◽  
Kefyalew Girma

Experiments were conducted in Montana to evaluate Environmentally Smart Nitrogen (ESN) as a nitrogen (N) source in wheat. Plots were arranged in a split-plot design with ESN, urea, and a 50%-50% urea-ESN blend at low, medium, and high at-seeding N rates in the subplot, with four replications. Measurements included grain yield (GY), protein (GP), and N uptake (GNU). A partial budget economic analysis was performed to assess the net benefits of the three sources. Average GY varied from 1816 to 5583 kg ha−1and grain protein (GP) content ranged from 9.1 to 17.3% among site-years. Urea, ESN, and the blend resulted in higher GYs at 3, 2, and 2 site-years out of 8 evaluated site-years, respectively. Topdressing N improved GY for all sources. No trend in GP associated with N source was observed. With GP-adjusted revenue, farmer would not recover investment costs from ESN or blend compared with urea. With ESN costing consistently more than urea per unit of N, we recommend urea as N source for spring wheat in Northern Great Plains.


2015 ◽  
Vol 1 (6) ◽  
pp. e1500558 ◽  
Author(s):  
Jonathan G. Lundgren ◽  
Scott W. Fausti

Recent shifts in agricultural practices have resulted in altered pesticide use patterns, land use intensification, and landscape simplification, all of which threaten biodiversity in and near farms. Pests are major challenges to food security, and responses to pests can represent unintended socioeconomic and environmental costs. Characteristics of the ecological community influence pest populations, but the nature of these interactions remains poorly understood within realistic community complexities and on operating farms. We examine how species diversity and the topology of linkages in species’ abundances affect pest abundance on maize farms across the Northern Great Plains. Our results show that increased species diversity, community evenness, and linkage strength and network centrality within a biological network all correlate with significantly reduced pest populations. This supports the assertion that reduced biological complexity on farms is associated with increased pest populations and provides a further justification for diversification of agroecosystems to improve the profitability, safety, and sustainability of food production systems. Bioinventories as comprehensive as the one conducted here are conspicuously absent for most agroecosystems but provide an important baseline for community and ecosystem ecology and the effects of food production on local biodiversity and ecosystem function. Network analyses of abundance correlations of entire communities (rather than focal interactions, for example, trophic interactions) can reveal key network characteristics, especially the importance and nature of network centrality, which aid in understanding how these communities function.


Sign in / Sign up

Export Citation Format

Share Document