Seeding Rate and Variety Effects on Yield, Yield Components, and Economic Return of Field Pea in the Northern Great Plains

2011 ◽  
Vol 10 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Nleya Thandiwe ◽  
John Rickertsen
2009 ◽  
Vol 89 (6) ◽  
pp. 1089-1097 ◽  
Author(s):  
J M Baird ◽  
S J Shirtliffe ◽  
F L Walley

Organic lentil (Lens culinaris Medik.) producers must rely upon the recommended rate for conventional production of 130 plants m-2, but this seeding rate may not be suitable, as organic and conventional production systems differ in management and inputs. The objective of this study was to determine an optimal seeding rate for organic production of lentil considering a number of factors, including yield, weed suppression, soil nitrogen and phosphorus concentrations, plant uptake of phosphorus, and economic return. A field experiment was conducted for 4 site-years at locations near Saskatoon, SK. Treatments included seeding rates of 15, 38, 94, 235 and 375 seeds m-2. Seed yield increased with increasing seeding rate up to 1290 kg ha-1. Weed biomass was reduced by 59% at the highest seeding rate as compared with the lowest seeding rate. Post-harvest soil phosphorus and nitrogen levels were similar between seeding rate treatments. Economic return was maximized at $952 ha-1 at the highest density of 229 plants m-2, achieved with a seeding rate of 375 seeds m-2. Organic farmers should increase the seeding rate of lentil to achieve a plant density of 229 plants m-2 to increase profitability and provide better weed suppression.Key words: Lentil, organic, seeding rate, weed suppression, economic return


2009 ◽  
Vol 89 (3) ◽  
pp. 455-464 ◽  
Author(s):  
J. M. Baird ◽  
F. L. Walley ◽  
S. J. Shirtliffe

Seeding rates have not been established for organic production of field pea in the northern Great Plains and producers must rely upon a recommended target stand of 88 plants m-2 for conventional production of this crop. This seeding rate may not be suitable as the two systems differ in the use of inputs and in pest management. The objective of this study was to determine an optimal seeding rate for organic production of field pea considering a number of agronomic factors and profitability. Field sites were established using a randomized complete block design with increasing seeding rates, summerfallow and green manure treatments. Seed yield increased up to 1725 kg ha-1 with increasing seeding rate. Weed biomass decreased with increasing seeding rate by up to 68%. Post-harvest soil phosphorus levels and soil water storage did not change consistently between treatments. Post-harvest soil inorganic nitrogen (N), however, was higher for the summerfallow and green manure treatments than for the seeding rate treatments. Field pea reached a maximum economic return at a seeding rate of 200 seeds m-2 and an actual plant density of 120 plants m-2. Organic farmers should increase the seeding rate of field pea to increase returns and provide better weed suppression. Key words: Pea (field), organic, seeding rate, weed suppression, profit, soil N


2017 ◽  
Vol 109 (2) ◽  
pp. 524-531 ◽  
Author(s):  
Lucas A. Haag ◽  
Johnathon D. Holman ◽  
Joel Ransom ◽  
Tom Roberts ◽  
Scott Maxwell ◽  
...  

2009 ◽  
Vol 89 (2) ◽  
pp. 281-288 ◽  
Author(s):  
P. M. Carr ◽  
G. B. Martin ◽  
R. D. Horsley

Tillage is being reduced in semiarid regions. The impact of changing tillage practices on field pea (Pisum sativum L.) performance has not been considered in a major pea-producing area within the US northern Great Plains. A study was conducted from 2000 through 2005 to determine how field pea performance compared following spring wheat (Triticum aestivum L.) in clean-till (CT), reduced-till (RT), and no-till (NT) systems arranged in a randomized complete block at Dickinson in southwestern North Dakota. Seed yield increased over 1600 kg ha-1 in 2000 and almost 400 kg ha-1 in 2003 under NT compared with CT, and by 960 kg ha-1 in 2000 under NT compared with RT (P < 0.05). Differences in seed yield were not detected between tillage systems in other years. Plant establishment was improved as tillage was reduced, averaging 66 plants m-2 under NT and RT compared with 60 plants m-2 under CT management. The soil water conservation that can occur after adopting NT may explain the increased seed yields that occurred in some years. These results suggest that field pea seed yield can be increased by eliminating tillage in semiarid areas of the US northern Great Plains, particularly when dry conditions develop and persist. Key words: Zero tillage, field pea, cropping system, N-fixation, legume


2009 ◽  
Vol 23 (1) ◽  
pp. 23-27 ◽  
Author(s):  
Andrew W. Lenssen

In the northern Great Plains, fields are land rolled after the planting of annual pulse and forage crops to push rocks back into the soil to prevent damage to harvest equipment. Field trials were conducted in 2004 and 2005 to determine if land rolling influenced weed density or biomass associated with field pea, forage barley, and summer fallow. The experiment included two planting dates, conventional and delayed, for both barley and pea. Separate fallow plots were included with each planting date. Preplant tillage was conducted with a field cultivator for all treatments. Across years, crops, and planting dates, land rolling approximately doubled densities of tumble mustard, Russian thistle, kochia, and redroot pigweed shortly after crop emergence and at harvest compared with nonrolled. Land rolling increased density of early-emerging green foxtail but density at harvest was not affected. Wild oat densities were not influenced by rolling. Weed biomass at harvest was greater after land rolling than nonrolled. Land rolling after planting decreased subsequent pea yield by 330 kg/ha, but did not influence water use or water use efficiency. Land rolling is advantageous by hastening depletion of soil broadleaf weed seed banks in forage barley, but may increase problematic broadleaf weeds in pea.


jpa ◽  
1999 ◽  
Vol 12 (4) ◽  
pp. 624-629 ◽  
Author(s):  
Guy P. Lafond ◽  
Yantai Gan

Crop Science ◽  
2018 ◽  
Vol 58 (6) ◽  
pp. 2633-2643 ◽  
Author(s):  
Zakir Hossain ◽  
Eric N. Johnson ◽  
Robert E. Blackshaw ◽  
Kui Liu ◽  
Arlen Kapiniak ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 240
Author(s):  
Graham R. S. Collier ◽  
Dean M. Spaner ◽  
Robert J. Graf ◽  
Brian L. Beres

Ultra-early seeding of spring wheat (Triticum aestivum L.) on the northern Great Plains can increase grain yield and grain yield stability compared to current spring wheat planting systems. Field trials were conducted in western Canada from 2015 to 2018 to evaluate the impact of optimal agronomic management on grain yield, quality, and stability in ultra-early wheat seeding systems. Four planting times initiated by soil temperature triggers were evaluated. The earliest planting was triggered when soils reached 0–2.5 °C at a 5 cm depth, with the subsequent three plantings completed at 2.5 °C intervals up to soil temperatures of 10 °C. Two spring wheat lines were seeded at each planting date at two seeding depths (2.5 and 5 cm), and two seeding rates (200 and 400 seeds m−2). The greatest grain yield and stability occurred from combinations of the earliest seeding dates, high seeding rate, and shallow seeding depth; wheat line did not influence grain yield. Grain protein content was greater at later seeding dates; however, the greater grain yield at earlier seeding dates resulted in more protein production per unit area. Despite extreme ambient air temperatures below 0 °C after planting, plant survival was not reduced at the earliest seeding dates. Planting wheat as soon as feasible after soil temperatures reach 0 °C, and prior to soils reaching 7.5–10 °C, at an optimal seeding rate and shallow seeding depth increased grain yield and stability compared to current seeding practices. Adopting ultra-early wheat seeding systems on the northern Great Plains will lead to additional grain yield benefits as climate change continues to increase annual average growing season temperatures.


Sign in / Sign up

Export Citation Format

Share Document