AGRONOMIC PERFORMANCE OF TRIAZINE-RESISTANT SINGLE-CROSS HYBRID OILSEED RAPE (Brassica napus L.)

1985 ◽  
Vol 65 (4) ◽  
pp. 889-892 ◽  
Author(s):  
IAN GRANT ◽  
WALLACE D. BEVERSDORF

The agronomic performance of eight triazine-resistant single-cross oilseed rape (B. napus L.) hybrids was evaluated. The yield of most of the hybrids was significantly greater than Atr-Regent; some of the hybirds demonstrated mid-parent heterosis, but none of the eight exhibited high-parent heterosis. In most cases the hybrids were intermediate to the parents for flowering date, plant height, lodging resistance, physiological maturity, percent oil and percent protein.Key words: Brassica napus L., oilseed rape, F1 hybrid, triazine resistance

1985 ◽  
Vol 27 (4) ◽  
pp. 472-478 ◽  
Author(s):  
I. Grant ◽  
W. D. Beversdorf

A 6 × 6 diallel cross was conducted in spring-planted oilseed rape (Brassica napus L.) in 1983 at Elora and Dundalk, Ontario. The F1 hybrids exhibited positive heterosis for seed yield, of up to 72%, over the higher-yielding parent in the hybrid crosses. Heterosis for 1000 seed weight, percent oil, plant height, and lodging resistance was nonsignificant; negative heterosis for percent protein was observed with some hybrids. Generally, the hybrids were intermediate to the parents in flowering date and physiological maturity. Specific combining ability was more important than general combining ability for seed yield, percent oil, percent protein, plant height (Dundalk), and lodging resistance (Elora); specific combining ability was as important as general combining ability for 1000 seed weight, physiological maturity, plant height (Elora), and lodging resistance (Dundalk). The cultivars 'Topas' and 'Regent' were the best general combiners for seed yield. The best specific combinations for seed yield heterosis, 'Westar' × 'Hanna', 'Regent' × 'Liné', and 'Regent' × 'D-1', exhibited average high-parent heterosis values of 50, 38, and 30%, respectively. The results demonstrated that considerable potential exists for producing high-yielding single-cross hybrids of oilseed rape. Commercial exploitation of this heterosis will depend on the successful development of suitable pollination control mechanisms.Key words: Brassica napus, oilseed rape, F1 hybrid, heterosis, combining ability.


2021 ◽  
Vol 66 (1) ◽  
pp. 17-25
Author(s):  
Valiollah Rameeh ◽  
Maryam Niakan ◽  
Mohammad Mohammadi

The effects of four sulphur levels: S0, S1, S2 and S3, including 0, 12, 24 and 36 kg S ha-1, respectively, along with 115 kg N ha-1 were studied on yield-related traits of oilseed rape (Brassica napus L.). The significant variance of treatments was determined for plant height, yield component characters, seed yield and oil content. The sulphur application significantly increased most of the traits compared to the S0 level. The S3 (36 kg S ha-1) treatment led to the highest mean value of plant height (132 cm) which was classified with S2 (24 kg S ha-1) in the same statistical group. Sulphur had an increasing effect on pods per plant, and it ranged from 92 to 196 for S0 and S3 applications, respectively. S0 and S1 with 92 and 121 pods per plant were grouped in the same statistical group. In addition, S2, and S3 with 165 and 196 pods per plant showed no significant statistical difference. The sulphur application significantly increased seed yield compared to control (S0 level), and it ranged from 2744 to 3215 kg ha-1 in S0 and S3, respectively. The average oil contents of 45.69, 46.96, 47.46 and 49.53 % were detected for 0, 12, 24 and 36 kg S ha-1, respectively.


Agronomy ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 129
Author(s):  
Liang Chai ◽  
Haojie Li ◽  
Jinfang Zhang ◽  
Lintao Wu ◽  
Benchuan Zheng ◽  
...  

Plant height is a vital agronomic trait for crops, including oilseed crops such as rapeseed (Brassica napus L.). It affects the crop yield, oil content, and lodging resistance in rapeseed. In this study, we investigated a dwarf trait controlled by a semi-dominant allele in rapeseed. A dwarf line, YA2016-12, was crossed with a tall line, G184-189, and an F2 population was established. Forty of the tallest plants and 40 of the shortest plants from the F2 population were selected and two DNA pools (tall and dwarf) were constructed by the bulked segregant analysis (BSA) method. The two DNA pools and two parental DNAs were then re-sequenced. A sliding window analysis was used to calculate the Δ(SNP-index) and discover an association region on chromosome A03 with a length of 12.4 Mb. Within this region, we found 1225 genes, including 811 genes with non-synonymous or frameshift mutations between YA2016-12 and G184-189. Alignment to known plant height-related orthologs in Arabidopsis thaliana, as well as KEGG pathway and gene ontology annotations, was used to identify nine candidate genes (BnaA03g31770D, BnaA03g37960D, BnaA03g24740D, BnaA03g40550D, BnaA03g26120D, BnaA03g35130D, BnaA03g42350D, BnaA03g25610D, and BnaA03g39850D) involved in gibberellin or cytokinin signaling. Identification of the causal gene for this trait, and of genetic markers linked to favorable alleles, has potential utility for marker-assisted selection to breed rapeseed varieties with improved height.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mao Yang ◽  
Jianbo He ◽  
Shubei Wan ◽  
Weiyan Li ◽  
Wenjing Chen ◽  
...  

Abstract Background Plant height is an important architecture trait which is a fundamental yield-determining trait in crops. Variety with dwarf or semi-dwarf phenotype is a major objective in the breeding because dwarfing architecture can help to increase harvest index, increase planting density, enhance lodging resistance, and thus be suitable for mechanization harvest. Although some germplasm or genes associated with dwarfing plant type have been carried out. The molecular mechanisms underlying dwarfism in oilseed rape (Brassica napus L.) are poorly understood, restricting the progress of breeding dwarf varieties in this species. Here, we report a new dwarf mutant Bndwarf2 from our B. napus germplasm. We studied its inheritance and mapped the dwarf locus BnDWARF2. Results The inheritance analysis showed that the dwarfism phenotype was controlled by one semi-dominant gene, which was mapped in an interval of 787.88 kb on the C04 chromosome of B. napus by Illumina Brassica 60 K Bead Chip Array. To fine-map BnDWARF2, 318 simple sequence repeat (SSR) primers were designed to uniformly cover the mapping interval. Among them, 15 polymorphic primers that narrowed down the BnDWARF2 locus to 34.62 kb were detected using a F2:3 family population with 889 individuals. Protein sequence analysis showed that only BnaC04.BIL1 (BnaC04g41660D) had two amino acid residues substitutions (Thr187Ser and Gln399His) between ZS11 and Bndwarf2, which encoding a GLYCOGEN SYNTHASE KINASE 3 (GSK3-like). The quantitative real-time PCR (qRT-PCR) analysis showed that the BnaC04.BIL1 gene expressed in all tissues of oilseed rape. Subcellular localization experiment showed that BnaC04.BIL1 was localized in the nucleus in tobacco leaf cells. Genetic transformation experiments confirmed that the BnaC04.BIL1 is responsible for the plant dwarf phenotype in the Bndwarf2 mutants. Overexpression of BnaC04.BIL1 reduced plant height, but also resulted in compact plant architecture. Conclusions A dominant dwarfing gene, BnaC04.BIL1, encodes an GSK3-like that negatively regulates plant height, was mapped and isolated. Our identification of a distinct gene locus may help to improve lodging resistance in oilseed rape.


2020 ◽  
Vol 21 (22) ◽  
pp. 8740
Author(s):  
Daria Chlebek ◽  
Artur Pinski ◽  
Joanna Żur ◽  
Justyna Michalska ◽  
Katarzyna Hupert-Kocurek

Endophytic bacteria hold tremendous potential for use as biocontrol agents. Our study aimed to investigate the biocontrol activity of Pseudomonas fluorescens BRZ63, a new endophyte of oilseed rape (Brassica napus L.) against Rhizoctonia solani W70, Colletotrichum dematium K, Sclerotinia sclerotiorum K2291, and Fusarium avenaceum. In addition, features crucial for biocontrol, plant growth promotion, and colonization were assessed and linked with the genome sequences. The in vitro tests showed that BRZ63 significantly inhibited the mycelium growth of all tested pathogens and stimulated germination and growth of oilseed rape seedlings treated with fungal pathogens. The BRZ63 strain can benefit plants by producing biosurfactants, siderophores, indole-3-acetic acid (IAA), 1-aminocyclopropane-1-carboxylate (ACC) deaminase, and ammonia as well as phosphate solubilization. The abilities of exopolysaccharide production, autoaggregation, and biofilm formation additionally underline its potential to plant colonization and hence biocontrol. The effective colonization properties of the BRZ63 strain were confirmed by microscopy observations of EGFP-expressing cells colonizing the root surface and epidermal cells of Arabidopsis thaliana Col-0. Genome mining identified many genes related to the biocontrol process, such as transporters, siderophores, and other secondary metabolites. All analyses revealed that the BRZ63 strain is an excellent endophytic candidate for biocontrol of various plant pathogens and plant growth promotion.


Planta ◽  
2004 ◽  
Vol 221 (3) ◽  
pp. 328-338 ◽  
Author(s):  
Jens Tilsner ◽  
Nina Kassner ◽  
Christine Struck ◽  
Gertrud Lohaus

1997 ◽  
Vol 150 (4) ◽  
pp. 414-419 ◽  
Author(s):  
Jeroen A. Wilmer ◽  
Johannes P.F.G. Helsper ◽  
Linus H.W. van der Plas

Sign in / Sign up

Export Citation Format

Share Document