Integrated pest management of disease and arthropod pests of greenhouse vegetable crops in Ontario: Current status and future possibilities

1991 ◽  
Vol 71 (3) ◽  
pp. 887-914 ◽  
Author(s):  
J. L. Shipp ◽  
G. J. Boland ◽  
L. A. Shaw

Disease and arthropod pests are a continual problem for greenhouse vegetable production. These problems range from minor infestations to major disease or arthropod pest outbreaks that can destroy an entire crop. In Ontario, in the past, the major management strategy was pesticide control. However, many plant pathogen, insect and mite pests are resistant to registered pesticides and few new pesticides are being developed. Alternative control strategies exist or are being developed for most major pests. This review describes the current status of pesticide, cultural and biological control of disease and arthropod pests of greenhouse vegetables in Ontario and discusses the future possibilities for the integration of pest management practices utilizing plant resistance, nutrition, environment and biological control agents into an expert system approach. Key words: Vegetable (greenhouse) crops, integrated pest management

2018 ◽  
Vol 71 ◽  
pp. 112-120 ◽  
Author(s):  
Abie Horrocks ◽  
Paul A. Horne ◽  
Melanie M. Davidson

An integrated pest management (IPM) strategy was compared with farmers’ conventional pest management practices on twelve spring- and autumn-sown seed and forage brassica crops. Demonstration trials were conducted in Canterbury from spring 2015 to autumn 2017 by splitting farmers’ paddocks in half and applying the two management approaches side by side. A farmer participatory approach was used, with management decisions based on monitoring pests and biological-control agents. Farmer and adviser training with a focus on monitoring and identification was carried out. Biological-control agents capable of contributing to pest control were identified in all brassica crops. There was a 35% reduction in the number of insecticides applied under IPM compared with conventional management, negligible crop yield differences, and the type of insecticides applied was different. IPM adoption at these farms was high by the end of the 3-year project with 11 of the 12 farmers implementing IPM across 90—100% of their brassica crops. This project was a starting point for an industry-wide change of practice to IPM, which has become more widespread since its completion.


2009 ◽  
Vol 19 (1) ◽  
pp. 61-65 ◽  
Author(s):  
Laura Pickett Pottorff ◽  
Karen L. Panter

Crops grown in high tunnels are just as susceptible to pests and diseases as those grown under greenhouse and field conditions. Crops that lend themselves economically to this type of production system are edible and/or minor crops. Therefore, labeled pesticides for these crops are limited and sometimes nonexistent. However, there is a wide range of integrated pest management (IPM) strategies available to high tunnel producers. These strategies include biological control, which is often left out of traditional IPM programs when labeled pesticides are available. High tunnel production is very conducive to the inclusion of biological controls and allows for a truly IPM system. This article provides a selective overview of common arthropod pests and diseases encountered in high tunnels, as well as strategies that have potential for becoming best management practices in high tunnels with additional research.


Author(s):  
J. R. Adams ◽  
G. J Tompkins ◽  
A. M. Heimpel ◽  
E. Dougherty

As part of a continual search for potential pathogens of insects for use in biological control or on an integrated pest management program, two bacilliform virus-like particles (VLP) of similar morphology have been found in the Mexican bean beetle Epilachna varivestis Mulsant and the house cricket, Acheta domesticus (L. ).Tissues of diseased larvae and adults of E. varivestis and all developmental stages of A. domesticus were fixed according to procedures previously described. While the bean beetles displayed no external symptoms, the diseased crickets displayed a twitching and shaking of the metathoracic legs and a lowered rate of activity.Examinations of larvae and adult Mexican bean beetles collected in the field in 1976 and 1977 in Maryland and field collected specimens brought into the lab in the fall and reared through several generations revealed that specimens from each collection contained vesicles in the cytoplasm of the midgut filled with hundreds of these VLP's which were enveloped and measured approximately 16-25 nm x 55-110 nm, the shorter VLP's generally having the greater width (Fig. 1).


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 531b-531
Author(s):  
J. Nienhuis

REDCAHOR is the Spanish acronym for “Central American Vegetable Network.” Vegetables have traditionally been an important source of nutrients and vitamins in the diet in Central America. Vegetable production in this region is now changing as local consumers are demanding increased diversity and quality and international markets are expanding with “non-traditional” vegetable exports. The present restraints to expanded research and production of vegetables in the region include i) need for cultivars with increased insect and disease resistance, ii) poor and excessive use of pesticides, and iii) inadequate postharvest technology. In addition, there are few vegetable researchers in the region and response to their activities have not been coordinated. The goal of REDCAHOR is to develop a regional network of national institutions that can prioritize agendas and cooperate to maximize the impact of available resources. Establishment of a system of regional trials and cooperative regional programs in integrated pest management and plant breeding are currently under development. A series of regional workshops are planned, including integrated pest management, maintenance and use of genetic resources, organic production, and greenhouse production. In addition, REDCAHOR, in collaboration with the Escuela Agricola Panamerica in Honduras, will offer regional short-course training in vegetable breeding and genetics as well as vegetable production and management, including integrated pest management.


2021 ◽  
Vol 13 (16) ◽  
pp. 8792
Author(s):  
Milorad Vojvodić ◽  
Renata Bažok

Seed treatment as a method of local application of pesticides in precise agriculture reduces the amount of pesticides used per unit area and is considered to be the safest, cheapest and most ecologically acceptable method of protecting seeds and young plants from pests in the early stages of their development. With the introduction of insecticides from the neonicotinoid group in the mid-1990s, the frequency of seed treatment increased. Due to suspected negative effects on pollinators, most of these insecticides are banned in the European Union. The ban has therefore led to a reduction in the number of active substances approved for seed treatment and to an increased re-use of active substances from the group of pyrethroids as well as other organophosphorus insecticides, which pose potentially very serious risks, perhaps even greater than those of the banned neonicotinoids. The objective of this review is to analyze the advantages and disadvantages of seed treatment and the potential role of insecticide seed treatment in reducing the negative impact of pesticides on the environment. The main disadvantage of this method is that it has been widely accepted and has become a prophylactic protective measure applied to almost all fields. This is contrary to the principles of integrated pest management and leads to an increased input of insecticides into the environment, by treating a larger number of hectares with a lower amount of active ingredient, and a negative impact on beneficial entomofauna. In addition, studies show that due to the prophylactic approach, the economic and technical justification of this method is often questionable. Extremely important for a quality implementation are the correct processing and implementation of the treatment procedure as well as the selection of appropriate insecticides, which have proven to be problematic in the case of neonicotinoids. The ban on neonicotinoids and the withdrawal of seed treatments in oilseed rape and sugar beet has led to increased problems with a range of pests affecting these crops at an early stage of growth. The results of the present studies indicate good efficacy of active ingredients belonging to the group of anthranilic diamides, cyantraniliprole and chlorantraniliprole in the treatment of maize, soybean, sugar beet and rice seeds on pests of the above-ground part of the plant, but not on wireworms. Good efficacy in controlling wireworms in maize is shown by an insecticide in the naturalites group, spinosad, but it is currently used to treat seeds of vegetable crops, mainly onions, to control onion flies and flies on other vegetable crops. Seed treatment as a method only fits in with the principles of integrated pest management when treated seeds are sown on land where there is a positive prognosis for pest infestation.


Sign in / Sign up

Export Citation Format

Share Document