The effects of soil freeze–thaw on soil aggregate breakdown and concomitant sediment flow in Prince Edward Island: A review

2013 ◽  
Vol 93 (4) ◽  
pp. 459-472 ◽  
Author(s):  
Linnell M. Edwards

Edwards, L. M. 2013. The effects of soil freeze–thaw on soil aggregate breakdown and concomitant sediment flow in Prince Edward Island: A review. Can. J. Soil Sci. 93: 459–472. The importance of aggregate size and integrity in soil productivity and crop production is paramount, and aggregate size reduction or increase invariably becomes a primary concern in such soil management practices as tillage and organic matter manipulation. In this regard, therefore, the present review looks particularly at the consequence of freeze–thaw cycling (FTC) on agricultural lands in Prince Edward Island (PEI) where an annual average of 40 cycles induce measurable aggregate breakdown with mixed consequences. On the one extreme, the consequences are manifest in increased soil erosion. On the other extreme, reduced (or reversed) soil compaction and improved seedbed conditions are welcomed consequences where temperature alternation breaks up hard pans or soil clods, or where the predominance of smaller aggregates can be an asset in seedbed environments, favouring improved crop emergence and early-spring establishment. In the PEI soils studied, the greatest changes in aggregate size distribution with FTC occurred in the largest and smallest size fractions wherein fractions <0.5 mm showed a 33% average increase while, simultaneously, the 4.75–9.5 mm fractions showed a 28% average decrease. This breakdown is reflected most contrastingly where FTCs to maximum (asymptotic) breakdown averaged up to 3.5 times for a loam as it did for a sandy loam or a fine sandy loam soil. This review also examines FTC in a broader agricultural and environmental context where it can potentially impact agro-sustainability. Where FTC effects on a fine sandy loam were measured in terms of erosion, there was a sediment mass increase of about 90% in interrill flow and about 25% in rill flow. Further, this review emphasizes methodology that has proven to be workable under the circumstances of PEI's dominant agricultural soils and the FTC research objectives that they helped to shape. It was considered important in this review, also, to highlight the need for expanded research (commencing with regional cooperation), particularly on frost depth, to feed into moisture-availability modelling towards improved clarity for end-user benefit.


1989 ◽  
Vol 69 (4) ◽  
pp. 799-811 ◽  
Author(s):  
LINNELL M. EDWARDS ◽  
J. R. BURNEY

Three soils from Prince Edward Island (a loam, a fine sandy loam, and a sandy loam) were tested under a laboratory rainfall simulator to examine the effects of frequency of freezing and thawing, winter rye cover, incorporated cereal residue, and subsoil compaction on runoff volume and sediment loss. Wooden soil boxes were subjected to simulated rain (i) at the end of a 10-d freezing period, and (ii) at the end of the 5th 24-h freezing period of a 10-d alternating freeze-thaw cycle (freeze/thaw). Where the soil was continuously frozen for 10 d, there was 178% greater sediment loss and 160% greater runoff than with daily freeze/thaw over the same period, but there was no difference in sediment concentration. Incorporated cereal residue decreased sediment loss to 50% and runoff to 77% of that from bare soil. Winter rye cover decreased sediment loss to 73% of that from bare soil. Simulated soil compaction caused a 45% increase in sediment loss. The loam soil showed 16.5% greater loss of fine sediment fractions <0.075 mm than the fine sandy loam which showed 23.4% greater loss than the sandy loam. Key words: Freeze-thaw, erosion, compaction, winter rye, cereal residue, rainfall simulator, Prince Edward Island soils



2012 ◽  
Vol 92 (3) ◽  
pp. 529-536 ◽  
Author(s):  
Enheng Wang ◽  
Richard M. Cruse ◽  
Xiangwei Chen ◽  
Aaron Daigh

Wang, E., Cruse, R. M., Chen, X. and Daigh, A. 2012. Effects of moisture condition and freeze/thaw cycles on surface soil aggregate size distribution and stability. Can. J. Soil Sci. 92: 529–536. Freeze/thaw cycles can affect soil aggregate stability, which in turn impacts wind and water erosion. The objectives of this laboratory study were: (1) to determine the effect of variable freeze/thaw cycles and soil water conditions on aggregate size distribution and stability; and (2) to evaluate differences in aggregate size distribution and stability between disturbed soil and undisturbed soil cores as affected by freeze/thaw cycles and soil water conditions. Surface soil was collected before freezing in late fall of 2009. Aggregates isolated from disturbed soil or intact soil cores were subjected to a factorial combination of 3 gravimetric water content treatments: 0.15 m3 m−3, 0.23 m3 m−3 or 0.30 m3 m−3, and 3 freeze/thaw treatments: 0, 3, or 9 cycles. A freeze/thaw cycle involved soil freezing at –10∘C for 24 h, followed by thawing at 5∘C for 24 h. Most aggregate size classes were affected significantly (P<0.05) by freeze/thaw cycles except for wet-sieved aggregates >5 mm. Dry-sieved aggregates were relatively more sensitive to the freeze/thaw treatment than wet-sieved aggregates. The mean weight diameter (MWD) of dry-sieved aggregates was significantly (P<0.05) greater at 0.30 m3 m−3 than 0.15 m3 m−3 water content, but the opposite trend was observed for MWD of wet aggregates and aggregate stability. There was a significant (P<0.05) response of the MWD in dry-sieved aggregates to the interactive freeze/thaw×water content effect that differed for aggregates obtained from disturbed soil and those in the undisturbed soil core, but not for the MWD of wet-sieved aggregates and aggregate stability.



2000 ◽  
Vol 80 (4) ◽  
pp. 607-615 ◽  
Author(s):  
M. R. Carter ◽  
J. E. Richards

Subsoils in Prince Edward Island have poor chemical and often physical quality for root growth that may present a barrier to development of alfalfa (Medicago sativa L.). This study was conducted to characterise the response or benefit, on soil properties and alfalfa growth, of chemical amelioration and loosening of the subsoil. In 1987, the following three treatments were imposed on an acidic, fine sandy loam, Humo-Ferric Podzol: control (no subsoiling or lime), subsoiling alone, and subsoiling plus lime (5 Mg ha−1 dry CaCO3) mixed into the subsoil. The subsoiler was a Wye Double-Digger, a combined plough and rotary cultivator that facilitated the mixing of lime into the soil over the 230–480 mm depth. Management of the 0–200 mm soil depth was the same for all treatments. Growth of alfalfa and change in soil properties were monitored over time. In 2 of 4 yr (1991–1994), alfalfa yield was significantly (P < 0.05) increased by the subsoil plus lime treatment, compared with subsoiling alone or the control. Yield increases were related to periods of low growing season precipitation. Subsoil amelioration increased alfalfa root penetration (by 90 mm) and reduced leaf Mn concentration. Over an 8-yr period (1987–1994), soil exchangeable Ca was increased over fourfold, while exchangeable Al was decreased threefold in the ameliorated subsoil, compared with the control. Soil pH (in water) was increased from 4.8 to near 6.0. There was some evidence that liming of the topsoil improved the subsoil chemistry over time. Bulk density and penetrometer resistance contours, measured over time, indicated that the soil loosening effect was sustained throughout the soil profile over the duration of the study. Soil biological properties were not changed by the subsoil treatments. Key words: Subsoil acidity, podzol, lime, deep placement, alfalfa (Medicago sativa L.), cool-humid climate



1995 ◽  
Vol 8 (2) ◽  
pp. 127-138 ◽  
Author(s):  
L.M. Edwards ◽  
J.R. Burney ◽  
P.A. Frame


Solid Earth ◽  
2015 ◽  
Vol 6 (1) ◽  
pp. 311-321 ◽  
Author(s):  
S. Arjmand Sajjadi ◽  
M. Mahmoodabadi

Abstract. Aggregate breakdown is an important process which controls infiltration rate (IR) and the availability of fine materials necessary for structural sealing under rainfall. The purpose of this study was to investigate the effects of different slope gradients, rain intensities and particle size distributions on aggregate breakdown and IR to describe the formation of surface seal. To address this issue, 60 experiments were carried out in a 35 × 30 × 10 cm detachment tray using a rainfall simulator. By sieving a sandy loam soil, two sub-samples with different maximum aggregate sizes of 2 mm (Dmax2 mm) and 4.75 mm (Dmax4.75 mm) were prepared. The soils were exposed to two different rain intensities (57 and 80 mm h−1) on several slopes (0.5, 2.5, 5, 10 and 20%) each at three replicates. The result showed that for all slope gradients and rain intensities, the most fraction percentages in soils Dmax2 and Dmax4.75 mm were in the finest size classes of 0.02 and 0.043 mm, respectively. The soil containing finer aggregates exhibited higher transportability of pre-detached material than the soil containing larger aggregates. Also, IR increased with increasing slope gradient, rain intensity and aggregate size under unsteady state conditions because of less development of surface seal. However, under steady state conditions, no significant relationship was found between slope and IR. The findings of this study revealed the importance of rain intensity, slope steepness and soil aggregate size on aggregate breakdown and seal formation, which can control infiltration rate and the consequent runoff and erosion rates.



2006 ◽  
Vol 86 (4) ◽  
pp. 741-748 ◽  
Author(s):  
M R Carter ◽  
A J Campbell

Interactions between tillage management for manure incorporation and rate of manure application may influence crop productivity and soil properties. This study was conducted to evaluate the effect of liquid swine (Sus scrofa L.) manure (LSM) applied at three N rates (40, 80, 160 kg ha-1), compared with mineral N fertilizer, in a 2-yr barley (Hordeum vulgare L.)-soybean (Glycine max L. Merr.) rotation, incorporated by two tillage methods (chisel plough and disc), on crop yield and quality and some soil properties, especially C parameters. The LSM was applied every second year in the spring, prior to barley seeding. The study was conducted over a 5-yr period on a Charlottetown fine sandy loam (Orthic Humo-Ferric Podzol) in Prince Edward Island. The experimental design was a split-plot with four replicates. Soil samples (0–60 cm) were obtained at the termination of the study to determine residual effects of the LSM on soil properties. The two methods of LSM incorporation had no differential effect on crop response. Generally, increasing the application rate of LSM increased the barley yield, but had no effect on grain N concentration. A residual effect on crop grain yield for the high rate of LSM was evident in the soybean year. Crop response to LSM was similar to that of mineral fertilizer. Application operations for LSM had no adverse effect on soil strength or soil bulk density. Soil properties (microbial biomass C, carbohydrates, water-stable aggregates) were not greatly influenced by LSM application, however, increases in particulate C (POM-C) were evident for the high LSM rate at the 10- to 30-cm soil depth. The study showed that for fine sandy loams in Prince Edward Island low to medium rates of LSM applied every second year could serve as a source of N for barley in barley-soybean rotations. Key words: Barley, soybean, liquid swine manure, fine sandy loam, soil properties, tillage incorporation, eastern Canada



2015 ◽  
Vol 29 (4) ◽  
pp. 501-508 ◽  
Author(s):  
Jasmin Schomakers ◽  
Franz Zehetner ◽  
Axel Mentler ◽  
Franz Ottner ◽  
Herwig Mayer

Abstract It has been increasingly recognized that soil organic matter stabilization is strongly controlled by physical binding within soil aggregates. It is therefore essential to measure soil aggregate stability reliably over a wide range of disruptive energies and different aggregate sizes. To this end, we tested highaccuracy ultrasonic dispersion in combination with subsequent sedimentation and X-ray attenuation. Three arable topsoils (notillage) from Central Europe were subjected to ultrasound at four different specific energy levels: 0.5, 6.7, 100 and 500 J cm-3, and the resulting suspensions were analyzed for aggregate size distribution by wet sieving (2 000-63 μm) and sedimentation/X-ray attenuation (63-2 μm). The combination of wet sieving and sedimentation technique allowed for a continuous analysis, at high resolution, of soil aggregate breakdown dynamics after defined energy inputs. Our results show that aggregate size distribution strongly varied with sonication energy input and soil type. The strongest effects were observed in the range of low specific energies (< 10 J cm-3), which previous studies have largely neglected. This shows that low ultrasonic energies are required to capture the full range of aggregate stability and release of soil organic matter upon aggregate breakdown.



1992 ◽  
Vol 72 (4) ◽  
pp. 395-402 ◽  
Author(s):  
M. R. Carter

A tillage study was conducted in Prince Edward Island with winter wheat (Triticum aestivum L.) over two seasons on a Gowanbrae light fine sandy loam, a Humo-Ferric Podzol. One-pass mouldboard ploughing, shallow tillage using a rotary harrow, and direct drilling were evaluated for their effects on crop productivity and soil physical properties. Direct drilling increased plant survival but not grain yield in the first year compared to the other tillage systems. Leaf diseases significantly reduced crop performance under shallow tillage and direct drilling in the second year. None of the tillage systems had adverse effects on soil strength at field capacity over the 0- to 350-mm soil profile depth, as penetrometer resistance values were < 1.5 MPa. Differences in soil macro-aggregation and organic carbon distribution between tillage systems were noted in the Ap horizon. Sequential measurements on soil cores equilibrated at 6 kPa tension for macropore volume, air permeability at low air pressure (0.25 kPa), oxygen diffusion rate (ODR) at 0.65 mV, and shear strength indicated that the soil physical condition was within the optimum range for root growth, over the 0- to 240-mm depth, in each tillage system. In addition, relative compaction was maintained at a low level in all systems. The quotient of air permeability and macropore volume, as an index of pore continuity, indicated that the relatively large macropore volumes under mouldboard ploughing were less efficient in conducting air than the macropores under direct drilling. These differences in pore continuity were most prevalent at the lower soil depth.Key words: Soil physical properties, soil compaction, Podzolic soil, winter cereals



Soil Research ◽  
1989 ◽  
Vol 27 (2) ◽  
pp. 401 ◽  
Author(s):  
M Muneer ◽  
JM Oades

Uniformly 14C-labelled straw with or without CaCO3 or CaSO4.2H2O was incubated in a leached, fine sandy loam in the field. The addition of both Ca salts increased the residual 14C in the soil after several months decomposition, CaSO4.2H2O being more effective than CaCO3 in this respect. Addition of the Ca salts decreased the amount of dispersible clay and increased the proportion of particles 50-250 �m diameter. The addition of 14C-labelled wheat straw (with or without CaSO4.2H2O or CaCO3) increased the stability of aggregates >2000 pm diameter. Addition of Ca during decomposition of straw resulted in a synergistic stabilization of aggregates >1 mm. Moreover, the stabilization was prolonged in the presence of Ca.



2014 ◽  
Vol 6 (2) ◽  
pp. 3303-3331 ◽  
Author(s):  
S. Arjmand Sajjadi ◽  
M. Mahmoodabadi

Abstract. Aggregate breakdown is an important process which controls infiltration rate (IR) and the availability of fine materials necessary for structural sealing under rainfall. The purpose of this study was to investigate the effects of different slope gradients, rain intensities and particle size distributions on aggregate breakdown and IR to describe the formation of surface sealing. To address this issue, 60 experiments were carried out in a 35 cm x 30 cm x 10 cm detachment tray using a rainfall simulator. By sieving a sandy loam soil, two sub-samples with different maximum aggregate sizes of 2 mm (Dmax 2 mm) and 4.75 mm (Dmax4.75 mm) were prepared. The soils were exposed to two different rain intensities (57 and 80 mm h-1) on several slopes (0.5, 2.5, 5, 10, and 20%) each at three replications. The result showed that the most fraction percentages in soils Dmax 2 mm and Dmax 4.75 mm were in the finest size classes of 0.02 and 0.043 mm, respectively for all slope gradients and rain intensities. The soil containing finer aggregates exhibited higher transportability of pre-detached material than the soil containing larger aggregates. Also, IR increased with increasing slope gradient, rain intensity and aggregate size under unsteady state conditions because of less development of surface seal. But under steady state conditions, no significant relationship was found between slope and IR. The finding of this study revealed the importance of rain intensity, slope steepness and soil aggregate size on aggregate breakdown and seal formation, which can control infiltration rate and the consequent runoff and erosion rates.



Sign in / Sign up

Export Citation Format

Share Document