Risk simulation of the economics of manure application to restore eroded wheat cropland

1993 ◽  
Vol 73 (2) ◽  
pp. 267-274 ◽  
Author(s):  
Brian S. Freeze ◽  
C. Webber ◽  
C. W. Lindwall ◽  
J. F. Dormaar

The economics of hauling manure as an amendment for restoring the productivity of artificially eroded wheat cropland was investigated using a simulation model. The model incorporated data on the long-term variability of wheat price, growing season precipitation and manure moisture content, and data from manure application experiments conducted on land where topsoil had been removed in levelling. Results showed that on average over the long term, the value of manure as an amendment for restoring the productivity of slightly eroded wheat cropland (< 20 cm soil lost/removed) is sufficient to allow manure to be hauled 3–5 km further than would be the case on non-eroded soils. On heavily eroded wheat cropland (> 80 cm soil lost/removed), hauling distance can be extended approximately 20 km. The disposal market for feedlot manure can be expected to extend to a distance of about 55 km from its source. Results are applicable to the dryland wheat areas of the dark brown soil zone of the Canadian prairies. Key words: Feedlot manure, fertilizer economics, eroded soil, animal wastes

2008 ◽  
Vol 136 (4) ◽  
pp. 1554-1561 ◽  
Author(s):  
Rezaul Mahmood ◽  
Kenneth G. Hubbard ◽  
Ronnie D. Leeper ◽  
Stuart A. Foster

Abstract Land use change can significantly affect root zone soil moisture, surface energy balance, and near-surface atmospheric temperature and moisture content. During the second half of the twentieth century, portions of the North American Great Plains have experienced extensive introduction of irrigated agriculture. It is expected that land use change from natural grass to irrigated land use would significantly increase near-surface atmospheric moisture content. Modeling studies have already shown an enhanced rate of evapotranspiration from the irrigated areas. The present study analyzes observed dewpoint temperature (Td) to assess the affect of irrigated land use on near-surface atmospheric moisture content. This investigation provides a unique opportunity to use long-term (1982–2003) mesoscale Td data from the Automated Weather Data Network of the high plains. Long-term daily Td data from 6 nonirrigated and 11 irrigated locations have been analyzed. Daily time series were developed from the hourly data. The length of time series was the primary factor in selection of these stations. Results suggest increase in growing-season Td over irrigated areas. For example, average growing-season Td due to irrigation can be up to 1.56°C higher relative to nonirrigated land uses. It is also found that Td for individual growing-season month at irrigated locations can be increased up to 2.17°C by irrigation. Based on the results, it is concluded that the land use change in the Great Plains has modified near-surface moistness.


1988 ◽  
Vol 68 (2) ◽  
pp. 337-344 ◽  
Author(s):  
C. A. CAMPBELL ◽  
R. P. ZENTNER ◽  
F. SELLES

Data from an 18-yr crop rotation study carried out on a Brown loam soil at Swift Current, Saskatchewan, were used to estimate equations that relate spring wheat straw yields, and N and P content of grain and straw to moisture use (MU). Moisture use was defined as soil moisture content in 0- to 120-cm depth at seeding, less soil moisture content at harvest, plus growing season precipitation. Grain yields were also related to straw yields and to N content of the straw. Potential net N mineralization (Nmin) in summerfallow (periods during the growing season with negative Nmin omitted) was related (r = 0.74**) to precipitation received during the spring to fall period. An attempt to relate apparent net Nmin (determined by N balance) in cropped systems to growing season precipitation or to MU was not successful. Highly significant linear regressions were obtained for straw yields, grain N and P contents vs. MU, and for grain yield vs. straw yield (r = 0.66** – 0.83**), but the other relationships were less reliable (r = 0.41** – 0.55**) though still significant. We discussed how these relationships might be used to estimate fertilizer N requirements, for examining N immobilization-mineralization, and for estimating residue sufficiency for erosion control on summerfallowed land. Key words: Straw:grain ratio, N uptake, P uptake, crop residues, N mineralization


1980 ◽  
Vol 60 (3) ◽  
pp. 461-469 ◽  
Author(s):  
J. B. BOLE ◽  
U. J. PITTMAN

Results of a 5-yr field experiment were used to develop a regression model (R = 0.94) describing barley yield as a function of available soil water in the spring (Ws), growing season precipitation (GSP), and N fertilizer. Yields on independent fertility plots having Ws and GSP levels within the scope of the data used in deriving the equation were in close agreement with those predicted by the model. Equations were developed for Ws defined as soil water on either 15 May or 1 June and GSP from then until 31 July. Including rainfall received after 31 July in GSP decreased the accuracy of the model. At the levels of GSP occurring in the study, GSP and Ws affected yield to a similar degree, but with the long-term average GSP and Ws levels at Lethbridge, Ws was only about half as effective as GSP on stubble and one-third as effective on summer fallow. Growing season precipitation had a three times greater effect on barley response to N fertilizer than Ws. The model would allow a producer to base his fertilizer N rate on a gravimetrically determined Ws level at seeding and use the GSP probability as his risk level. Using the current cost:price ratio of N fertilizer and barley, he can optimize his N fertilizer level based on the measured Ws.


1969 ◽  
Vol 49 (2) ◽  
pp. 189-197 ◽  
Author(s):  
E. de Jong ◽  
D. A. Rennie

Equations describing yield as a function of moisture use arc reported for fallow-seeded wheat for the years 1960 to 1965, inclusive, and for wheat seeded on stubble land from 1964 to 1967. In general, yields increased linearly with water use; second-degree functions did not greatly increase the correlation, but represent more realistic yield functions. The increase in yield per cm water used was larger on fallow than on stubble land, and increased with fertilization. Growing season precipitation ranged from 5 to 26 cm during the study period; the long-term average is 19 cm. Mean yields for unfertilized and fertilized fallow and stubble wheat were 1,500 and 1,860 kg/ha, and 1,340 and 1,720 kg/ha, respectively.Yield, water used, and water use efficiency varied somewhat, depending on whether the crop was grown on a knoll, upper slope, lower slope, or in depressional areas.


2020 ◽  
Vol 4 (3) ◽  
Author(s):  
Paul A Beck ◽  
Matthew R Beck ◽  
Stacey A Gunter ◽  
Jon T Biermacher ◽  
Robert L Gillen

Abstract Stocking rate is a fundamental management factor that has major impacts on animal performance, profitability, and long-term sustainability of native range ecosystems. This research was conducted to determine the effects of stocking rate on performance and economics of growing steers grazing a mixed-grass prairie on a rolling upland red shale ecological site at the Marvin Klemme Range Research Station (35° 25′ N 99° 3′ W). The recommended sustainable stocking rate at this location is suggested to be 25 animal unit days (AUD)/ha. Steers [n = 836, initial body weight (BW) ± SD = 216 ± 11.7 kg] grazed at seven stocking rates ranging from 4.13 ha/steer to 1.83 ha/steer over a 7-yr period, from 1990 to 1996, with year considered the random replication. During the experimental period, overall climatic conditions were favorable for forage production with average growing season precipitation of 118% of the long-term average over the 7-yr experiment, and only 1 yr (1994 with only 57% of the long-term average) with growing season precipitation substantially less than the long-term average. Over the entire summer grazing season, average daily gain (ADG) decreased linearly (P &lt; 0.01) with increasing stocking rate, such that for each additional hectare available per steer ADG increased by 0.05 kg/d (R2 = 0.88). Contrary to ADG, BW gain per hectare over the grazing season increased linearly (P &lt; 0.01) with increasing stocking rate, as stocking rate increased from 4.13 ha/steer to 1.83 ha/steer BW gain per hectare doubled from 33.1 kg/ha to 66.8 kg/ha, respectively. With land costs included in the economic analysis, net return per hectare increased linearly (P &lt; 0.01) from $13 [U.S. Dollars [USD]) at the 4.13 ha/steer to $52/ha at the 1.83 ha/steer. For each additional hectare per steer, net return was reduced by $15.80 (USD)/steer and $15.70 (USD)/ha. In favorable climatic conditions, such as during this 7-yr experiment, economically optimal stocking rates can be more than doubled compared with the stocking rate recommended by the United States Department of Agriculture (USDA) Soil Conservation Service. Increasing stocking rates decrease individual animal performance but maximize BW gain per hectare, which leads to the increasing economic returns observed. Research is needed to determine the long-term implications of these stocking rates during unfavorable growing conditions and setting stocking rates based on seasonal weather patterns and extended weather outlook predictions.


2019 ◽  
Vol 116 (26) ◽  
pp. 12883-12888 ◽  
Author(s):  
André L. C. Franco ◽  
Laureano A. Gherardi ◽  
Cecilia M. de Tomasel ◽  
Walter S. Andriuzzi ◽  
Katharine E. Ankrom ◽  
...  

Precipitation changes among years and locations along gradients of mean annual precipitation (MAP). The way those changes interact and affect populations of soil organisms from arid to moist environments remains unknown. Temporal and spatial changes in precipitation could lead to shifts in functional composition of soil communities that are involved in key aspects of ecosystem functioning such as ecosystem primary production and carbon cycling. We experimentally reduced and increased growing-season precipitation for 2 y in field plots at arid, semiarid, and mesic grasslands to investigate temporal and spatial precipitation controls on the abundance and community functional composition of soil nematodes, a hyper-abundant and functionally diverse metazoan in terrestrial ecosystems. We found that total nematode abundance decreased with greater growing-season precipitation following increases in the abundance of predaceous nematodes that consumed and limited the abundance of nematodes lower in the trophic structure, including root feeders. The magnitude of these nematode responses to temporal changes in precipitation increased along the spatial gradient of long-term MAP, and significant effects only occurred at the mesic site. Contrary to the temporal pattern, nematode abundance increased with greater long-term MAP along the spatial gradient from arid to mesic grasslands. The projected increase in the frequency of extreme dry years in mesic grasslands will therefore weaken predation pressure belowground and increase populations of root-feeding nematodes, potentially leading to higher levels of plant infestation and plant damage that would exacerbate the negative effect of drought on ecosystem primary production and C cycling.


TAPPI Journal ◽  
2013 ◽  
Vol 12 (1) ◽  
pp. 45-50 ◽  
Author(s):  
LAURENCE SCHIMLECK ◽  
KIM LOVE-MYERS ◽  
JOE SANDERS ◽  
HEATH RAYBON ◽  
RICHARD DANIELS ◽  
...  

Many forest products companies in the southeastern United States store large volumes of roundwood under wet storage. Log quality depends on maintaining a high and constant wood moisture content; however, limited knowledge exists regarding moisture variation within individual logs, and within wet decks as a whole, making it impossible to recommend appropriate water application strategies. To better understand moisture variation within a wet deck, time domain reflectometry (TDR) was used to monitor the moisture variation of 30 southern pine logs over an 11-week period for a wet deck at the International Paper McBean woodyard. Three 125 mm long TDR probes were inserted into each log (before the deck was built) at 3, 4.5, and 7.5 m from the butt. The position of each log within the stack was also recorded. Mixed-effects analysis of variance (ANOVA) was used to examine moisture variation over the study period. Moisture content varied within the log, while position within the stack was generally not significant. The performance of the TDR probes was consistent throughout the study, indicating that they would be suitable for long term (e.g., 12 months) monitoring.


Author(s):  
O. A. Zadorozhna ◽  
T. P. Shyianova ◽  
M.Yu. Skorokhodov

Seed longevity of 76 spring barley gene pool samples (Hordeum vulgare L. subsp. distichon, convar. distichon: 56 nutans Schubl., two deficience (Steud.) Koern., two erectum Rode ex Shuebl., two medicum Koern.; convar. nudum (L.) A.Trof.: one nudum L. та subsp. vulgare: convar. vulgare: nine pallidum Ser., three rikotense Regel.; convar. coeleste (L.) A.Trof.: one coeleste (L.) A.Trof.) from 26 countries, 11 years and four places of reproduction was analyzed. Seeds with 5–8% moisture content were stored in chamber with unregulated and 4oC temperature. The possibility of seed storage under these conditions for at least 10 years without significant changes in germination has been established. The importance of meteorological conditions in the formation and ripening of seeds for their longevity is confirmed. The relationship between the decrease of barley seeds longevity and storage conditions, amount of rainfall, temperature regime during the growing season of plants is discussed.


Sign in / Sign up

Export Citation Format

Share Document