Yield and water use efficiency of pulses seeded directly into standing stubble in the semiarid Canadian Prairie

2002 ◽  
Vol 82 (4) ◽  
pp. 681-686 ◽  
Author(s):  
H. W. Cutforth ◽  
B. G. McConkey ◽  
D. Ulrich ◽  
P. R. Miller ◽  
S. V. Angadi

In semiarid climates, appropriate management of the previous crop stubble in combination with seeding method is important to improve growing conditions for the subsequent crop. To determine the effects of standing stubble of various heights on the microclimate and on the growth and yield of pulse crops, we seeded desi chickpea (Cicer arietinum L. “Cheston”), field pea (Pisum sativum L. “Grande”), and lentil (Lens culinaris L. “Laird”) directly into cultivated, short (15 to 18 cm), and tall (25 to 36 cm) spring wheat (Triticum aestivum L.) stubble. Standing stubble changed the microclimate near the soil surface by reducing soil temperatures, solar radiation, wind speed, and potential evapotranspiration throughout the life cycle of these crops. Microclimate effects were much more pronounced for tall versus short stubble. The three pulses responded similarly to increasing stubble height. Vine length increased as stubble height increased, but the plants did not stand more erect. However, there was a tendency for plant height to increase as stubble height increased. Tall and short stubble increased the overall average grain yield by 13 and 4% compared to cultivated stubble. Crop water use was not affected by stubble height so the increased grain production was due to increased water use efficiency. Tall and short stubble increased the overall average water use efficiency by 16 and 8% compared to cultivated stubble. Key words: Stubble height, pulse, microclimate, evapotranspiration, yield

2006 ◽  
Vol 86 (1) ◽  
pp. 99-107 ◽  
Author(s):  
H. W. Cutforth ◽  
S. V. Angadi ◽  
B. G. McConkey

Standing stubble traps snow and creates a favorable microclimate, which increases yields in wheat (Triticum aestivum L.) and pulses [chickpea (Cicer arietinum L.), field pea (Pisum sativum L.) and lentil (Lens culinaris L.)]. Generally, the taller the stubble the greater is the effect on microclimate and yield. A field study using farm-scale seeding and harvesting equipment was conducted over four seasons (1999 to 2002) to assess the effect of stubble management on the microclimate, water use and seed yield of argentine canola (Brassica napus L. ‘Arrow’) in the semiarid prairie surrounding Swift Current. Tall (30 cm), short (15 cm) and cultivated stubble treatments were deployed in fall and in spring. An additional tall stubble treatment with extra fertilizer N (application rate recommended for the Black soil zone in the subhumid prairie) was included to assess the role of fertilizer in canola response to stubble management practices. The differences in wind velocity, soil temperature and solar radiation reaching the soil surface indicated significant modification of the microclimate by tall compared with cultivated stubble. Yields were highest from the tall stubble receiving extra fertilizer. Further research is needed to determine optimum fertilizer rates to maximize canola yields in the semiarid prairie. For treatments receiving equivalent rates of fertilizer, tall stubble increased seed yield of canola by about 24% and water use efficiency (WUE) by about 19% compared with stubble cultivated in the fall. Comparing between stubble treatments deployed on fields that overwintered as tall stubble and which received equivalent rates of fertilizer, tall stubble increased canola yield by about 16% and WUE by about 11% compared with cultivated stubble. Crop water use was not affected by stubble management so the increased grain production was due to increased WUE. Key words: Stubble height, microclimate, canola, yield, water use efficiency


1997 ◽  
Vol 77 (3) ◽  
pp. 359-366 ◽  
Author(s):  
H. W. Cutforth ◽  
B. G. McConkey

In the semiarid region of the western Canadian prairies, seeding directly into standing cereal stubble is gaining popularity. This four year study was conducted at Swift Current, SK, to determine how seeding into tall (>30 cm high), short (about 15 cm high) and cultivated cereal stubble altered the microclimate thereby affecting the growth and yield of hard red spring wheat (Triticum aestivum L.). The treatments were deployed immediately before seeding on plots that had overwintered with tall stubble. Seeding wheat into tall stubble increased grain yield and water use efficiency by about 12% compared to wheat seeded into cultivated stubble. Yield and water use efficiency for wheat seeded into short stubble were intermediate to the other stubble treatments. As well, wheat seeded into tall stubble grew taller than wheat seeded into the cultivated stubble. Further, there was a tendency for spring wheat grown in tall stubble to produce more dry matter and more leaf area, to have a lower proportion of dry matter as leaves and a higher proportion as stems, and to have a lower harvest index than the other treatments.Growing season evapotranspiration (ET) was not affected by stubble height. When the seedlings were small, compared to cultivated stubble, tall stubble altered the microclimate near the soil surface by reducing the daily average windspeed, soil temperature, and incoming solar radiation, and increasing the reflected solar radiation. Throughout much of the growing season, potential ET at the soil surface, measured with minilysimeters, was significantly lower in the tall stubble. Tall stubble, compared to cultivated stubble, increased the proportion of ET that was transpired by the wheat. As well, reduced windspeeds and increased photosynthetic area may have increased the efficiency of net carbon assimilation. To increase grain yields, producers in the semiarid prairies who direct-seed spring wheat are advised to seed into stubble left standing as tall as practical (at least 30 cm). Key words: Standing stubble, wheat, microclimate, water use, yield


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 228
Author(s):  
Ikram Ullah ◽  
Hanping Mao ◽  
Ghulam Rasool ◽  
Hongyan Gao ◽  
Qaiser Javed ◽  
...  

This study was conducted to investigate the effects of various irrigation water (W) and nitrogen (N) levels on growth, root-shoot morphology, yield, and irrigation water use efficiency of greenhouse tomatoes in spring–summer and fall–winter. The experiment consisted of three irrigation water levels (W: 100% of crop evapotranspiration (ETc), 80%, and 60% of full irrigation) and three N application levels (N: 100%, 75%, and 50% of the standard nitrogen concentration in Hoagland’s solution treatments equivalent to 15, 11.25, 7.5 mM). All the growth parameters of tomato significantly decreased (p < 0.05) with the decrease in the amount of irrigation and nitrogen application. Results depicted that a slight decrease in irrigation and an increase in N supply improved average root diameter, total root length, and root surface area, while the interaction was observed non-significant at average diameter of roots. Compared to the control, W80 N100 was statistically non-significant in photosynthesis and stomatal conductance. The W80 N100 resulted in a yield decrease of 2.90% and 8.75% but increased irrigation water use efficiency (IWUE) by 21.40% and 14.06%. Among interactions, the reduction in a single factor at W80 N100 and W100 N75 compensated the growth and yield. Hence, W80 N100 was found to be optimal regarding yield and IWUE, with 80% of irrigation water and 15 mM of N fertilization for soilless tomato production in greenhouses.


2011 ◽  
Vol 59 (1) ◽  
pp. 13-22
Author(s):  
Z. Varga-Haszonits ◽  
E. Enzsölné Gerencsér ◽  
Z. Lantos ◽  
Z. Varga

The temporal and spatial variability of soil moisture, evapotranspiration and water use were investigated for winter barley. Evaluations were carried out on a database containing meteorological and yield data from 15 stations. The spatial distribution of soil moisture, evapotranspiration and water use efficiency (WUE) was evaluated from 1951 to 2000 and the moisture conditions during the growth period of winter barley were investigated. The water supply was found to be favourable, since the average values of soil moisture remained above the lower limit of favourable water content throughout the growth period, except for September–December and May–June. The actual evapotranspiration tended to be close to the potential evapotranspiration, so the water supplies were favourable throughout the vegetation period. The calculated values of WUE showed an increasing trend from 1960 to 1990, but the lower level of agricultural inputs caused a decline after 1990. The average values of WUE varied between 0.87 and 1.09 g/kg in different counties, with higher values in the northern part of the Great Hungarian Plain. The potential yield of winter barley can be calculated from the maximum value of WUE. Except in the cooler northern and western parts of the country, the potential yield of winter barley, based on the water supply, could exceed 10 t/ha.


2015 ◽  
Vol 33 (4) ◽  
pp. 679-687 ◽  
Author(s):  
M.Z. IHSAN ◽  
F.S. EL-NAKHLAWY ◽  
S.M. ISMAIL

ABSTRACT Understanding the critical period of weed competition is indispensable in the development of an effective weed management program in field crops. Current experiment was planned to evaluate the critical growth period ofSetaria and level of yield losses associated with delay in weeding in rain-fed drip irrigated wheat production system of Saudi Arabia. Field experiment was conducted to evaluate the effect of weeding interval (07-21, 14-28, 21-35, 28-42 and 35-49 days after sowing) and drought stress (75% and 50% of field capacity) on Setaria growth, wheat yield and water use efficiency. Season long weedy check and wellwatered (100% FC) plots were also maintained for comparison. Weeding interval and drought stress significantly (p ≤ 0.05) affected the growth and yield of Setaria and wheat. Drought stress from 75% to 50% FC resulted in reductions of 29-40% in Setaria height, 14-27% in Setaria density and 11-26% in Setaria dry biomass. All weeding intervals except 35-49 DAS significantly suppressedSetaria growth as compared with control. Delay in weeding increased weed-crop competition interval and reduced wheat yield and yield contributors. Therefore, the lowest yield of 1836 kg ha-1 was attained for weeding interval of 35-49 DAS at 50% FC. Water use efficiency and harvest index increased with decreasing FC levels but reduced with delay in weeding. Correlation analysis predicted negative association ofSetariadensity with wheat yield and yield contributors and the highest negative association was for harvest index (-0.913) and water use efficiency (-0.614). Early management of Setaria is imperative for successful wheat production otherwise yield losses are beyond economical limits.


2012 ◽  
Vol 59 (No. 1) ◽  
pp. 1-7 ◽  
Author(s):  
B. Wang ◽  
W. Liu ◽  
Q. Xue ◽  
T. Dang ◽  
C. Gao ◽  
...  

The objective of this study was to investigate the effect of nitrogen (N) management on soil water recharge, available soil water at sowing (ASWS), soil water depletion, and wheat (Triticum aestivum L.) yield and water use efficiency (WUE) after long-term fertilization. We collected data from 2 experiments in 2 growing seasons. Treatments varied from no fertilization (CK), single N or phosphorus (P), N and P (NP), to NP plus manure (NPM). Comparing to CK and single N or P treatments, NP and NPM reduced rainfall infiltration depth by 20&ndash;60 cm, increased water recharge by 16&ndash;21 mm, and decreased ASWS by 89&ndash;133 mm in 0&ndash;300 cm profile. However, crop yield and WUE continuously increased in NP and NPM treatments after 22 years of fertilization. Yield ranged from 3458 to 3782 kg/ha in NP or NPM but was 1246&ndash;1531 kg/ha in CK and single N or P. WUE in CK and single N or P treatments was &lt; 6 kg/ha/mm but increased to 12.1 kg/ha/mm in a NP treatment. The NP and NPM fertilization provided benefits for increased yield and WUE but resulted in lower ASWS. Increasing ASWS may be important for sustainable yield after long-term fertilization.


Agronomy ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 194 ◽  
Author(s):  
Sonja Blankenagel ◽  
Zhenyu Yang ◽  
Viktoriya Avramova ◽  
Chris-Carolin Schön ◽  
Erwin Grill

To improve sustainability of agriculture, high yielding crop varieties with improved water use efficiency (WUE) are needed. Despite the feasibility of assessing WUE using different measurement techniques, breeding for WUE and high yield is a major challenge. Factors influencing the trait under field conditions are complex, including different scenarios of water availability. Plants with C3 photosynthesis are able to moderately increase WUE by restricting transpiration, resulting in higher intrinsic WUE (iWUE) at the leaf level. However, reduced CO2 uptake negatively influences photosynthesis and possibly growth and yield as well. The negative correlation of growth and WUE could be partly disconnected in model plant species with implications for crops. In this paper, we discuss recent insights obtained for Arabidopsis thaliana (L.) and the potential to translate the findings to C3 and C4 crops. Our data on Zea mays (L.) lines subjected to progressive drought show that there is potential for improvements in WUE of the maize line B73 at the whole plant level (WUEplant). However, changes in iWUE of B73 and Arabidopsis reduced the assimilation rate relatively more in maize. The trade-off observed in the C4 crop possibly limits the effectiveness of approaches aimed at improving iWUE but not necessarily efforts to improve WUEplant.


1999 ◽  
Vol 132 (2) ◽  
pp. 139-148 ◽  
Author(s):  
M. V. K. SIVAKUMAR ◽  
S. A. SALAAM

A comprehensive study was conducted over a 4-year period (1984–87) to evaluate the water use, growth and yield responses of pearl millet (Pennisetum glaucum (L.) R. Br.) cv. CIVT grown with and without fertilizer (30 kg P2O5 and 45 kg N ha−1) at the ICRISAT Sahelian Centre, Sadoré, Niger. Our study showed significant year and fertilizer effects on the growth and yield of millet at the study site. Observed year effects were primarily due to the variations in the amount and distribution of rainfall in relation to the potential demand for water. During 1984, 1985 and 1987, total rainfall was below the long term average, while in 1986 it was above average. While the onset of rains (relative to the average date of onset) was early from 1984 to 1986, in 1987 the sowings were delayed by as much as 33 days. Of all the four years, the separation between the treatments in the cumulative evaporation is most evident for 1984, which was a drought year with below-average rainfall in all the months from June to September. Cumulative evaporation patterns in 1985 and 1986 were similar because of regular rains and high average rainfall per rainy day from June to October. In 1987, sowings were delayed until 15 July and only 6·9 mm of rainfall was received per rainy day in July. Hence cumulative evaporation was initially low and showed a significant increase only after two significant rain events in early August. There was a large response to fertilizer in all the years as small additions of fertilizer phosphate increased the soluble phosphate in the soil. Fertilizer application resulted in a small increase in water use (7–14%) in all years except 1987. Increased yield due to the application of fertilizer was accompanied by an increase in the water-use efficiency (WUE) in all the four years with the largest increase in 1985. The beneficial effect of fertilizers could be attributed to the rapid early growth of leaves which can contribute to reduction of soil evaporative losses and increased WUE. Over the four seasons, average increase in the WUE due to the addition of fertilizer was 84%.


Sign in / Sign up

Export Citation Format

Share Document