Identification and evaluation of flea beetle (Phyllotreta cruciferae) resistance within Brassicaceae

2000 ◽  
Vol 80 (4) ◽  
pp. 881-887 ◽  
Author(s):  
J. E. Gavloski ◽  
U. Ekuere ◽  
A. Keddie ◽  
L. Dosdall ◽  
L. Kott ◽  
...  

All currently registered varieties of canola/oilseed rape, Brassica napus and B. rapa, are susceptible to attack by flea beetles, although to varying degrees. The development of resistant cultivars would be an environmentally acceptable means to reduce the damage caused by flea beetles. Seedlings from 10 species of Brassicaceae were evaluated for levels of antixenosis resistance to flea beetles in the laboratory, along with 308 Sinapis alba/B. napus hybrids. Thlaspi arvense and 11 cultivars of S. alba were resistant to feeding by flea beetles. In addition, 34 S. alba/B. napus hybrids were resistant to feeding by flea beetle in at least one test, although many of these failed to demonstrate resistance with repeated testing. One hybrid line was resistant to feeding by flea beetles each of the four times it was tested, while another was resistant in three out of four tests. These data indicate that resistance to flea beetles within the Brassicaceae is a genetic trait and can be transferred by interspecific hybridization. This information is the first step towards introgression of genetic sources of flea beetle resistance from resistant relatives into canola varieties. Key words: Flea beetles, Phyllotreta cruciferae, Brassica, resistance, antixenosis, introgression

1991 ◽  
Vol 71 (2) ◽  
pp. 397-404 ◽  
Author(s):  
R. P. Bodnaryk ◽  
R. J. Lamb

Seedlings of Brassica napus L. 'Westar' or Sinapis alba L. 'Ochre' grown from seeds of various size were offered to flea beetles, Phyllotreta cruciferae (Goeze) in feeding tests for damage assessment. The proportion of cotyledon area damaged in both species was highest for seedlings grown from small seeds in choice and no-choice feeding tests. The proportion of seedlings killed by flea beetle feeding was also highest in seedlings from small seeds, an effect that was especially pronounced at high beetle densities (10/seedling) where 100% of seedlings from small seeds of B. napus were killed compared to 28.3% of seedlings from big seeds. For S. alba, at 20 beetles/seedling, 45.4% of seedlings from small seeds were killed compared to only 9.1% of seedlings from big seeds. Seedlings grown from big seeds of S. alba tolerated low levels of damage caused by flea beetle feeding or by scissors. No evidence for tolerance was obtained for seedlings from small seeds of S. alba or for seedlings from big or small seeds of B. napus. "Big seeds" appears to be a desirable trait that enhances crucifer seedling resistance to flea beetle attack and results in increased seedling survival. Key words: Brassica napus 'Westar', Sinapis alba 'Ochre', Phyllotreta cruciferae, flea beetle, seed size, resistance


1997 ◽  
Vol 129 (1) ◽  
pp. 43-49 ◽  
Author(s):  
P. Palaniswamy ◽  
R.J. Lamb ◽  
R.P. Bodnaryk

AbstractThe antibiosis of crucifers to flea beetles, Phyllotreta cruciferae (Goeze), was compared for Brassica juncea L., B. napus L., and B. rapa L. with low antixenosis, B. carinata L. and Sinapis alba L. with moderate antixenosis, and Thlaspi arvense L. with high antixenosis. Adult flea beetles collected from the field in early spring fed actively on intact or excised leaves of all plants except T. arvense. The beetles survived, and gained weight and fat on the Brassica species and S. alba, but not on intact foliage of T. arvense. No antibiosis was detected in any of the Brassica species or in S. alba. Intact foliage of T. arvense was so antixenotic that beetles probably starved rather than suffered from antibiosis. A low level of antibiosis was detected in excised foliage of T. arvense where the antixenosis was lost. These experiments show that estimates of beetle survival, dry weight, and fat content can be used in the laboratory to test small numbers of candidate plants for antibiosis. However, the level of antibiosis appears to vary less among Brassica species and related plants than does the level of antixenosis, and so the latter is a more promising type of resistance for use against flea beetles in canola.


1979 ◽  
Vol 111 (12) ◽  
pp. 1345-1353 ◽  
Author(s):  
H. G. Wylie

AbstractPhyllotreta cruciferae (Goeze) was usually the most abundant flea beetle on crops of Argentine rape, Brassica napus L., in Manitoba, followed in order by Phyllotreta striolata (F.) and Psylliodes punctulata Melsh. These three species and small numbers of Phyllotreta bipustulata (F.) were present on volunteer rape in the spring. A few specimens of a fifth rape-eating species, Phyllotreta robusta Lee, were trapped in April after hibernating. The three main species were recorded in all 16 localities in which samples of flea beetles on rape crops and/or volunteer rape were collected. Details of seasonal life history of each species are presented, as well as data on the abundance of the three main species throughout the year on rape crops, in overwintering habitats and on volunteer rape in spring. The relative abundance of P. cruciferae, P. striolata, and Ps. punctulata in different rape-growing areas of Manitoba is discussed.


1993 ◽  
Vol 125 (5) ◽  
pp. 903-912 ◽  
Author(s):  
P. Palaniswamy ◽  
R.J. Lamb

AbstractLaboratory experiments were conducted to determine the effect of wounding the cotyledons of Sinapis alba L. cv. Ochre, Brassica napus L. cv. Westar, B. rapa L. cv. Tobin, and C8711, a selection from Tobin, on subsequent feeding damage by the flea beetle, Phyllotreta cruciferae (Goeze). Cotyledons of 7-day-old seedlings were wounded either by puncturing them with needles (mechanical wounding) or by exposing them to flea beetles. One, 2, or 9 days following wounding, the wounded and unwounded seedlings were exposed to flea beetles and the feeding damage was estimated as a measure of antixenosis. Mechanical wounding of one of the cotyledons with 96 needle punctures induced a significant reduction in the damage of the unwounded cotyledons of S. alba, 1 or 2 days following wounding. True leaves of the wounded seedlings also showed consistently less damage than unwounded controls, 9 days following wounding. In S. alba, all three levels of mechanical wounding (i.e. 6, 24, or 96 punctures per cotyledon) reduced subsequent flea beetle damage to a similar extent. Wrapping a cotyledon of S. alba with a plastic film produced an effect similar to wounding it with needles. As with mechanical wounding, flea beetle wounding also reduced subsequent flea beetle damage in S. alba. Other plant species (B. napus and B. rapa) tested showed no measurable induced effects on subsequent feeding damage.


1998 ◽  
Vol 130 (3) ◽  
pp. 385-386 ◽  
Author(s):  
P. Palaniswamy ◽  
F. Matheson ◽  
R.J. Lamb

Water stress, especially wilting, can increase the susceptibility of plants to herbivory by insects (Holtzer et al. 1988). Insects as diverse as locusts and leaf-cutting ants prefer wilted foliage (Bernays and Lewis 1986; Vasconcelos and Cherrett 1996). Palaniswamy et al. (1997) observed that the crucifer flea beetle, Phyllotreta cruciferae (Goeze) (Coleoptera: Chrysomelidae), fed on excised and wilted foliage of Thlaspi arvense L. (Cruciferae) but not on intact and turgid foliage. If water stress can make unpalatable plants more palatable, identifying robust resistance to pests such as flea beetles will be difficult. The purpose of this study was to determine whether wilting affects feeding by the crucifer flea beetle and in particular if wilting differentially affects feeding on preferred and nonpreferred plants.


1992 ◽  
Vol 124 (5) ◽  
pp. 895-906 ◽  
Author(s):  
P. Palaniswamy ◽  
R.J. Lamb ◽  
P.B.E. McVetty

AbstractA laboratory method to screen crucifer seedlings for antixenosis resistance to flea beetles, Phyllotreta cruciferae (Goeze), is described. The method utilizes a plexiglass arena with a foam base to hold 30- by 50-mm vials containing individual seedlings of 10 entries (10 seedlings per entry) in a 10 × 10 layout. In each arena, nine test entries and a standard entry are compared in a Latin square design. Flea beetles are allowed to feed on seedlings for about 30 h, and then the damage to individual seedlings is estimated using a visual rating scale. A rating of one arena can be completed in about 15 min. Seedlings at the arena edge often suffer more damage than those in the centre of the arena, but the effect of this variability in damage is minimized by the Latin square design. Use of border (guard) rows and columns does not eliminate the edge effects. The use of arenas without borders, and a single damage rating where the damage to the standard entry is about 50% of the cotyledon area, are considered ideal for initial screening to identify sources of flea beetle resistance. The method detects entries that differ by as little as 18% damage using a single arena with 10 replicate seedlings per entry. No significant antixenosis was found among 19 cultivars of Brassica napus L. and B. campestris L., but one accession of B. carinata L. and two accessions of Sinapis alba (L.) exhibited antixenosis.


1997 ◽  
Vol 77 (2) ◽  
pp. 283-287 ◽  
Author(s):  
Robert P. Bodnaryk

Foliar concentrations of the predominant glucosinolates in the mustards B. juncea (allyl glucosinolate, sinigrin) and S. alba (p-hydroxybenzyl glucosinolate, sinalbin) were determined in lines that had been selected in breeding programs for low levels of glucosinolates in their seeds for the oilseed market. The glucosinolate concentrations found in the cotyledons and leaves of the selected lines were also low, often by three or more orders of magnitude, compared with the unselected parent. The flea beetle, Phyllotreta cruciferae Goeze, and the diamondback moth, Plutella xylostella (L.), (both crucifer specialists) fed at equal rates on B. juncea and its low-glucosinolate lines, indicating that these species are insensitive to sinigrin and suggesting that their pest status on low-glucosinolate lines of B. juncea will likely remain unchanged. By contrast, the bertha armyworm, Mamestra configurata Wlk. (a generalist) fed up to fivefold more on the leaves of low-glucosinolate lines, suggesting that its pest status on low-glucosinolate B. juncea is likely to worsen relative to the mustard B. juncea. Flea beetles, diamondback moth, and the bertha armyworm fed at equal rates on the mustard S. alba and a low-glucosinolate line indicating that the status of these pests on low-glucosinolate S. alba will unlikely be much different from the mustard S. alba.Lines of S. alba differing in their sinalbin concentration by 1000-fold had equal levels of antixenosis resistance in their cotyledons against flea beetles, leaving little doubt that this resistance is independent of glucosinolates. Flea beetle resistance was also detected in the cotyledons of a low-glucosinolate line of B. juncea. The resistance was not detected in the parental line or in another low-glucosinolate line and appears to have arisen fortuitously during crossing and selection. Since resistance occurs in a line with concentrations of sinigrin three or more orders of magnitude lower than non-resistant lines, this resistance is also unlikely to be glucosinolate based. The mustards S. alba and B. juncea are a useful source of cotyledon resistance against flea beetles that is compatible with the aims of oilseed breeding. Key words: Glucosinolate, Brassica juncea, Sinapis alba, Phyllotreta cruciferae, Plutella xylostella, Mamestra configurata, resistance, mustard, canola, insect


1998 ◽  
Vol 130 (2) ◽  
pp. 241-242 ◽  
Author(s):  
Palaniswamy Pachagounder ◽  
Robert J. Lamb

The crucifer flea beetle, Phyllotreta cruciferae (Goeze), feeds primarily on plants in the Brassicaceae (Cruciferae) (Feeny et al. 1970). Introduced from Europe, it is now a widespread pest of canola, Brassica napus L. and Brassica rapa L., in North America (Lamb and Turnock 1982; Weiss et al. 1991). Before canola occupied so much crop land in western Canada, flea beetles were present and presumably fed mostly on wild crucifers. These native and weedy crucifers are potential sources of resistance genes that might be transferred to canola. We examine feeding preferences of flea beetles among nine wild crucifers (Table 1) to determine which, if any, are avoided. The suitability of these plants has already been examined for another crucifer-feeding chrysomelid, the red turnip beetle, Entomoscelis americana Brown (Gerber and Obadofin 1981; Gerber 1984), and the feeding responses of the beetles are compared.


2012 ◽  
Vol 92 (1) ◽  
pp. 97-107
Author(s):  
Juliana J. Soroka ◽  
Larry F. Grenkow

Soroka, J. J. and L. F. Grenkow. 2012. When is fall feeding by flea beetles ( Phyllotreta spp., Coleoptera: Chrysomelidae) on canola ( Brassica napus L.) a problem? Can. J. Plant Sci. 92: 97–107. Two cultivars of Brassica napus canola were seeded in mid-May and early June in three field experiments in each of 3 yr near Saskatoon, Saskatchewan, to determine the effects of late-season flea beetle feeding on seed yields. In the first experiment, canola was sprayed with insecticide late in the summer to eliminate naturally-infesting flea beetles. In the second, 1×1×1.5 m screen cages were placed over early- and late-seeded canola at flowering and infested with flea beetles as canola matured. In the third investigation, sleeve cages were placed over individual plants and infested with 100 flea beetles. Flea beetles had no detrimental effects on early-seeded canola in any experiment, but did affect seed yields of late-seeded plots in some trials. Over two cultivars in 1 year, late-seeded plants in cube cages infested with about 350 flea beetles per plant when lower pods were turning from translucent to green in colour reduced yield by 241 kg ha−1 over control yields. Seed weights in these late-seeded plots were decreased from 2.68 g per 1000 seeds in uninfested cages to 2.44 g per 1000 seeds in infested cages. Populations of 100 flea beetles per plant in sleeve cages had no effect on harvest parameters in any seeding date or year.


1993 ◽  
Vol 125 (4) ◽  
pp. 703-713 ◽  
Author(s):  
R.J. Lamb ◽  
P. Palaniswamy ◽  
K.A. Pivnick ◽  
M.A.H. Smith

AbstractFive cycles of single-plant and progeny-row selection in lines derived from Brassica rapa L. "Tobin" were used to identify plants with incomplete resistance to flea beetles, Phyllotreta cruciferae (Goeze). This line, called C8711, had higher survival, grew larger, and yielded more seed than Tobin when the two lines were compared in field plots at Glenlea, Manitoba, unprotected by insecticide. C8711 without insecticide yielded more seed than Tobin treated with a lindane seed dressing, but less than Tobin treated with carbofuran granules. With carbofuran, which prevents most flea beetle damage, the yield of C8711 was 35% higher than for Tobin. At Saskatoon, Saskatchewan, the differences between C8711 and Tobin were not statistically significant, although the trends were similar to those at Glenlea. C8711 was late maturing, produced small seed, and was not of canola quality. The resistance in C8711 is attributed to a low level of antixenosis, rapid growth at the cotyledon stage, and tolerance to damage during the first 3–4 weeks of growth.


Sign in / Sign up

Export Citation Format

Share Document