Grouping soils of the Montreal Lowlands (Quebec) according to fertility and P sorption and desorption characteristics

2001 ◽  
Vol 81 (1) ◽  
pp. 71-83 ◽  
Author(s):  
M L Leclerc ◽  
M C Nolin ◽  
D. Cluis ◽  
R R Simard

Soil tests P (STP) developed to estimate P fertilizer needs and designed to produce optimal economic crop yields, are often not well suited to assess potential environmental impact of fertilization practices. The objective of this study was to develop interpretative soil groupings of the Montreal Lowlands area (MLA) based on soil physico-chemical properties and on soil P sorption and desorption characteristics. Soil P sorption and desorption characteristics together with STP may help in evaluating potential risks of soil P addition. Sixty-six soil types (phases of soil series based on surface texture) were selected as representative soils of the study area. Twenty-seven soil properties were used, including Mehlich-3 extractable P and Al, ammonium-oxalate extractable P, Fe and Al, P sorption index (Psi) and Bray-2 extractable P(BR2P). Multivariate analysis was applied to generate clusters and interpret soil groupings. Principal components analysis yielded two components related: (1) to soil inherent fertility (texture) and (2) to P sorption capacity and desorption intensity. The Ward's clustering method was then applied to the first two component scores. Five soil fertility groups were obtained. Multiple discriminant analysis proposed a classification model using a small subset of variables. Five variables were selected among the soil survey characteristics for discriminating soil groups: clay content, pH measurement in water, cation exchange capacity, BR2P and ammonium-acetate extractable Mg. Adding Psi in the model improved the classification correctness. The results of this study indicate that physico-chemical properties of the surface layer used together with soil P sorption-desorption characteristics contributed to the development of an interpretative grouping that may also be useful to assess vulnerability to water contamination by P. Key words: Soil behavior, soil fertility groups, multivariate analysis techniques

2016 ◽  
Vol 51 (9) ◽  
pp. 1088-1098 ◽  
Author(s):  
Leandro Bortolon ◽  
Paulo Roberto Ernani ◽  
Elisandra Solange Oliveira Bortolon ◽  
Clesio Gianello ◽  
Rodrigo Gabriel Oliveira de Almeida ◽  
...  

Abstract The objective of this work was to assess the risk of phosphorus losses by runoff through an index based on the degree of P saturation (DPS), in cropland soils of Southern Brazil. Sixty-five highly representative cropland soils from the region were evaluated. Three labile P forms were measured (Mehlich-1, Mehlich-3, and ammonium oxalate), and four P sorption indexes were tested (phosphorus single sorption point and Fe+Al determined with the three extractors). Water-extractable P (WEP) was used as an index of P susceptibility to losses by surface runoff. The DPS was determined from the ratio between labile P and each sorption index. DPS values obtained from the ratio between Mehlich-1 P and the single P sorption point ranged from 1 to 25%, whereas those from Mehlich-1 P and Fe+Al (ammonium oxalate) ranged from 1 to 55%. All DPS types were highly correlated with WEP. From a practical stand point, the DPS obtained with both P and Fe+Al extracted with Mehlich-1 can be used to estimate the risk of P losses by runoff in soils of Southern Brazil.


Author(s):  
Gebeyaw Tilahun Yeshaneh

The study was conducted at the Abuhoy Gara Catchment, which is located in the Gidan District of North Wello Zone. The aim of the study was to study farmers’ perceptions about the effect of farm land management practices and soil depth on the distribution of major soil physico-chemical properties in eroded soils of Aboy Gara watershed. To address this issue, semi-structured interviews were conducted in 64 households to gain insight into soil fertility management practices, local methods were used to assess the fertility status of a field, and perceived trends in soil fertility. Thirty-three farmers were then asked to identify fertile and infertile fields. According to farmers response, farmers’ fields were characterized as fertile where it comprise black color, cracks during dry season, good crop performance, vigorous growth of certain plants and presence of plants in a dry environment whereas the infertile is where it shows yellow/white and red colors, compacted soils, stunted plant growth, presence of rocks and stones and wilting or dying of crops in a hot environment. A total of eight indicators (soil color, texture, soil depth, topography, soil drainage, and distance from home, type of weeds grown and cultivation intensity) were found to be used by farmers to evaluate and monitor soil fertility. The results of administered questions showed that the principal indicators mentioned by farmers as very important were soil colour (82.8%), continuous cropping land (72.2%), soil texture (62.8%), distance from home (61%), type of weeds grown (56%), soil depth (55.6%), topography (51.1%), and soil drainage (28.7%) as very important. So, among sixty four interviewed farmers: deep soil (60 farmers), soils near to home (60 farmers), forest soil (59 farmers), smooth fine soil (59 farmers), black color soil (58 farmers) and gentle slope soil (57farmers) are categorized as fertile whereas 59, 57, 56, 55, and 44farmers said that Sandy/coarse soil, shallow soil depth, steep slope soils and yellow/white, red soils and continuously cultivated soils are infertile, respectively. The overall result showed that there was good agreement between farmers’ assessment of the soil fertility status of a field and a number of these indicators. The soil laboratory analysis also corresponded well with farmers’ assessment of soil fertility. Therefore, to design more appropriate research and to facilitate clear communication with farmers, researchers need to recognize farmers’ knowledge, perceptions about assessments of soil fertility. Because, as they included all soil factors affecting plant growth, farmers’ perceptions of soil fertility were found to be more long term day-to-day close practical experience finding than those of researchers.


2014 ◽  
Vol 9 ◽  
pp. 27-39 ◽  
Author(s):  
Ram K. Shrestha

A study was carried out to compare the fertility of soils under improved soil  management practice with that of prevailing conventional practice and to assess the farmers’ perception on the improved practice in the upland   farming system. The study was carried out in Nasikasthan Sanga of Kavrepalanchok district of Nepal. Soil samples were collected from fields under improved conventional practice. Samples were taken at 0-15 and 15-30 cm depths and were analyzed for various physico-chemical properties to  compare the fertility status of the soils under both the practices. Altogether 68 farmers were interviewed to have information on farming practices and information pertinent to improved soil management practice being adopted by them. Results from soil physico-chemical analysis showed higher fertility of soils under improved practice in terms of more favorable pH level,  contents of exchangeable bases, available phosphorus and soil organic matter compared to prevailing conventional soil management practice. Moreover, majority of the farmers believed that soil fertility and physical condition of their upland soils had improved and that the productivity of major upland  crops had also increased after the adoption of improved soil management practice. Improved practice could play an important role in the sustainable management of upland soils in the mid hills of Nepal. It is however, desirable to conduct long-term research to further ascertain the effect of the practice on soil fertility of different soil types and land uses.Nepal Agric. Res. J. Vol. 9, 2009, pp. 27-39DOI: http://dx.doi.org/10.3126/narj.v9i0.11639 


Soil Research ◽  
2007 ◽  
Vol 45 (5) ◽  
pp. 397 ◽  
Author(s):  
David Nash ◽  
Murray Hannah ◽  
Kirsten Barlow ◽  
Fiona Robertson ◽  
Nicole Mathers ◽  
...  

Phosphorus (P) exports from agricultural land are a problem world-wide and soil tests are often used to identify high risk areas. A recent study investigated changes in soil (0–20 mm), soil water and overland flow in 4 recently laser-graded (<1 year) and 4 established (laser-graded >10 years) irrigated pastures in south-eastern Australia before and after 3 years of irrigated dairy production. We use the results from that study to briefly examine the relationships between a series of ‘agronomic’ (Olsen P, Colwell P), environmental (water-extractable P, calcium chloride extractable P, P sorption saturation, and P sorption), and other (total P, organic P) soil P tests. Of the 2 ‘agronomic’ soil P tests, Colwell P explained 91% of the variation in Olsen P, and Colwell P was better correlated with the other soil tests. With the exception of P sorption, all soil P tests explained 57% or more of the total variation in Colwell P, while they explained 61% or less of Olsen P possibly due to the importance of organic P in this soil. Variations in total P were best explained by the organic P (85%), Calcium chloride extractable P (83%), water-extractable P (78%), and P sorption saturation (76%). None of the tests adequately predicted the variation in P sorption at 5 mg P/L equilibrating solution concentration. The results of this limited study highlight the variability between soil P tests that may be used to estimate P loss potential. Moreover, these results suggest that empirical relationships between specific soil P tests and P export potential will have limited resolution where different soil tests are used, as the errors in the relationship between soil test P and P loss potential are compounded by between test variation. We conclude that broader study is needed to determine the relationships between soil P tests for Australian soils, and based on that study a standard protocol for assessing the potential for P loss should be developed.


2016 ◽  
Vol 3 (3) ◽  
pp. 75-81
Author(s):  
Willy Aclon Ligan

A soil fertility assessment survey was conducted at Barangay Aglayan, Malaybalay, Bukidnon, Philippines, on selected farms to assess the soil chemical properties (pH, OM, Extractable P and Exchangeable K) of sugarcane farms. A survey questionnaire was used to gather information among farms and a total of twenty-two (22) sugarcane farms were collected for soil samples and analyzed at the Soil and Plant Analysis Laboratory, College of Agriculture, Central Mindanao University. The 22 sugarcane farms surveyed in of Barangay Aglayan, Malaybalay, Bukidnon were identified as very strongly acidic, have medium organic matter content, low extractable phosphorus and very low in exchangeable potassium. These results demonstrated that the sugarcane farms in Bukidnon need amendments to meet the recommended soil test values for sugarcane. The results of this study have provided basic information to generate a soil nutrient map of sugarcane farms in Bukidnon, Philippines.


2020 ◽  
Vol 64 (4) ◽  
Author(s):  
Ramona BĂLC ◽  
Carmen ROBA ◽  
Gheorghe ROSIAN ◽  
Dan COSTIN ◽  
Csaba HORVATH ◽  
...  

Landslides determine increases and decreases in specific soil compounds which is affecting soil fertility. The recovery of soil fertility is a long process and may be used as an indicator of the landslide age and can contribute to the management plan of the affected area. In order to add to data about soil properties affected by landslides, the current study focuses on a young and shallow landslide from the western part of the Transylvanian Depression. Soil samples were analysed from a physico-chemical point of view (pH, organic matter – OM, total organic carbon – TOC, major cations, and iron content) in two places, at between 0 and 60 cm depth (inside and outside the landslide). The results obtained showed lower values of pH inside the landslide, low values of TOC and rock fragments in both places studied (inside and outside the landslide) and no differences in soil texture between disturbed and undisturbed soil. The ammonium, magnesium and calcium content was higher outside the landslide, the sodium level was slightly higher outside the landslide, while the potassium concentration was higher inside the landslide. This study offers new data regarding recovery of soil fertility and highlights the importance of gaining knowledge on soil properties of relevance to future measures to increase the fertility of agricultural soils.


Sign in / Sign up

Export Citation Format

Share Document