Straw removal increases the light fraction and mineralizable C and N compared with moldboard ploughing

2007 ◽  
Vol 87 (1) ◽  
pp. 113-115 ◽  
Author(s):  
Y K Soon

An earlier study indicated that cereal straw may be removed after harvest without affecting crop production, soil organic matter and microbial biomass. Further measurements of early indicators of changes in soil organic matter, viz., the light fraction and mineralizable C and N, confirm that straw removal is superior to straw incorporation with moldboard ploughing, and comparable to straw incorporation by disking, in C and N retention and turnover. Key words: Carbon, light fraction, mineralization, nitrogen, straw management

2018 ◽  
Vol 10 (8) ◽  
pp. 341
Author(s):  
Rodrigo Santos Moreira ◽  
Marcio Koiti Chiba ◽  
Isabella Clerici De Maria ◽  
Caio César Zito Siqueira ◽  
Aildson Pereira Duarte ◽  
...  

Soil organic matter is considered a key attribute for a sustainable agricultural production and is influenced by the quantity and quality of the crop residue deposited on the soil surface. Therefore, different crop rotations could change the soil organic matter pools. The objectives of this study were to evaluate the soil carbon pools obtained by chemical and physical fractionation methods and the humification index under different crop rotations in a no-till system. We test the following hypothesis: a) the distribution of C and N among the soil organic matter fractions depends on plant species rotation schemes and; b) labile fractions are more sensitive to the input of crop residues and therefore, more suitable for evaluating the impact of different crop rotations in the soil organic matter quality. We evaluated four crop sequences (corn/corn/corn; corn/wheat/corn; soybean/wheat/corn and soybean/corn/corn) in a no-till system. A five-year reforested area was used as reference. We determined the total C and N contents, the mineral-associated C and N, the light fraction of C and N, the labile carbon extracted with KMnO4 and the soil organic matter humification index. We found narrow differences between the crop rotation systems in the total C and N levels, the mineral-associated C and N fractions and the labile C extracted with KMnO4. The diversification of the agricultural system with soybean in crop rotation favored the accumulation of light fraction C and N in the soil that were more efficient to provide information about the changes in the soil organic matter quality.


Soil Research ◽  
2003 ◽  
Vol 41 (1) ◽  
pp. 95 ◽  
Author(s):  
D. Curtin ◽  
P. M. Fraser

In New Zealand, cereal straw has traditionally been burned to facilitate seedbed preparation for the succeeding crop. Because of concerns over the decline of organic matter and the associated deterioration in soil structure, farmers are interested in incorporating crop residues as a means of maintaining organic matter levels. In a 6-year trial on a Wakanui silt loam on the Canterbury Plains, we evaluated the effects of 3 straw management practices (i.e. straw incorporation, burning of straw, and straw removal) on total and labile soil organic matter. A fourth treatment was included to evaluate the local practice of including seed crops (grass and clover) in cereal rotations. The seed crops were grown every second year, the crop sequence being cereal–ryegrass–cereal–clover–cereal–clover. The rate of straw (wheat) decomposition was determined using a litter bag technique, with the bags being buried at a depth of 15 cm for intervals of up to 19 months. In the straw-incorporated treatment, about 25 t/ha of straw (~11 t C/ha) was returned to the soil during the trial. However, there was no significant effect (P > 0.05) of straw management treatments on total soil C (or N), or on labile organic matter pools, although there was a tendency for higher levels of mineralisable C and N where straw was incorporated. Measured straw decomposition rates were consistent with predictions of the Douglas-Rickman residue decomposition model. Under the relatively warm conditions of the Canterbury Plains (thermal time typically >4000 degree-days per year, calculated as the sum of daily degree-days above a base temperature of 0�C), about three-quarters of incorporated straw decomposed within a year. Of the 11 t C/ha of straw-C incorporated, we estimated that only about 1 t C/ha would remain in the soil at the time of sampling. An increase in soil C by this amount would not be detectable (total soil C was about 55 t/ha in the upper 15 cm). Growing seed crops every second year increased several of the labile organic pools (mineralisable C and N, light fraction C and N, microbial biomass) in the 0–7.5 and 7.5 cm soil layers and this may have beneficial effects (e.g. improved N supply) on the succeeding cereal crop. However, the seed crops did not significantly increase total soil organic matter within the 6 years.


Soil Research ◽  
2018 ◽  
Vol 56 (8) ◽  
pp. 820 ◽  
Author(s):  
K. A. Conrad ◽  
R. C. Dalal ◽  
D. E. Allen ◽  
R. Fujinuma ◽  
Neal W. Menzies

Quantifying the size and turnover of physically uncomplexed soil organic matter (SOM) is crucial for the understanding of nutrient cycling and storage of soil organic carbon (SOC). However, the C and nitrogen (N) dynamics of SOM fractions in leucaena (Leucaena leucocephala)–grass pastures remains unclear. We assessed the potential of leucaena to sequester labile, free light fraction (fLF) C and N in soil by estimating the origin, quantity and vertical distribution of physically unprotected SOM. The soil from a chronosequence of seasonally grazed leucaena stands (0–40 years) was sampled to a depth of 0.2m and soil and fLF were analysed for organic C, N and δ13C and δ15N. On average, the fLF formed 20% of SOC and 14% of total N stocks in the upper 0.1m of soil from leucaena rows and showed a peak of fLF-C and fLF-N stocks in the 22-year-stand. The fLF δ13C and fLF δ15N values indicated that leucaena produced 37% of fLF-C and 28% of fLF-N in the upper 0.1m of soil from leucaena rows. Irrespective of pasture type or soil depth, the majority of fLF-C originated from the accompanying C4 pasture-grass species. This study suggests that fLF-C and fLF-N, the labile SOM, can form a significant portion of total SOM, especially in leucaena–grass pastures.


2007 ◽  
Vol 47 (6) ◽  
pp. 700 ◽  
Author(s):  
M. C. Manna ◽  
A. Swarup ◽  
R. H. Wanjari ◽  
H. N. Ravankar

Yield decline or stagnation under long-term cultivation and its relationship with soil organic matter fractions are rarely considered. To understand this phenomenon, soil organic matter fractions and soil aggregate size distribution were studied in a long-term experiment at Akola, in a Vertisol in a semiarid tropical environment. For 14 years, the following fertiliser treatments were compared with undisturbed fallow plots: unfertilised (control), 100% recommended rates of N, NP, NPK (N : P : K ratios of 100 : 21.8 : 18.2 and 120 : 26.2 : 50 kg/ha for sorghum and wheat, respectively) and 100% NPK plus farmyard manure (FYM) and continuous cropping with a sorghum (Sorghum bicolor L. Moench) and wheat (Triticum aestivum L.) system during 1988–2001. The significant negative yield trend was observed in unbalanced use of inorganic N application for both crops. However, yields were maintained when NPK and NPK + FYM were applied. Results showed that soil organic C and total N in the unfertilised plot decreased by 21.7 and 18.2%, compared to the initial value, at a depth of 0–15 cm. Depletion of large macroaggregates (>2 mm) accounted for 22–81% of the total mass of aggregates in N, NP and unfertilised control plots compared to fallow plots. Irrespective of treatments, small macroaggregates (0.25–2 mm) dominated aggregate size distribution (56–71%), followed by microaggregates (0.053–0.25 mm, 18–37%). Active fractions, such as microbial biomass C, microbial biomass N, hot water soluble C and N, and acid hydrolysable carbohydrates were greater in NPK and NPK + FYM treatments than in the control. Carbon and N mineralisation were greater in small macroaggregates than microaggregates. Particulate organic matter C (POMC) and N (POMN) were significantly correlated (P < 0.01) with water-stable aggregate C and N (0.25–2 mm size classes), respectively. It was further observed that POMC and POMN were significantly greater in NPK and NPK + FYM plots than N and NP treated plots. Microbial biomass C was positively correlated with acid-hydrolysable carbohydrates (r = 0.79, P < 0.05). Continuous cropping and fertiliser use also influenced humic acid C and fulvic acid C fractions of the soil organic matter. Acid-hydrolysable N proportion in humic acid was greater than fulvic acid and it was greatest in NPK + FYM treatments. Continuous application of 100% NPK + FYM could restore soil organic carbon (SOC) to a new equilibrium level much earlier (t = 1/k, 2.4 years) than N (t = 1/k, 25.7 years), NP (t = 1/k, 8.1 years) and NPK (t = 1/k, 5.02 years). In conclusion, integrated use of NPK with FYM would be vital to obtain sustainable yields without deteriorating soil quality.


Bragantia ◽  
2010 ◽  
Vol 69 (suppl) ◽  
pp. 85-95 ◽  
Author(s):  
Diego Campana Loureiro ◽  
Helvécio De-Polli ◽  
Marcos Bacis Ceddia ◽  
Adriana Maria de Aquino

The objective of this work was to study the spatial variability of soil microbial biomass (SMB) and labile soil organic matter pools (labile SOM), under different management systems and plant cover. The experiment was conducted in a Haplic Planosol soil on an Integrated Agroecological Production System (SIPA), in Seropédica, Rio de Janeiro. The evaluated management systems were: alley cropping, pasture, and bush garden, the late one was used as reference area. Three grids of regular spacing of 2.5 x 2.5 meters were used for sampling, consisting of 25 georeferenced points each, where soil samples were taken at 0-10 cm depth. The following labile constituents of soil organic matter were determined: free light fraction (FLF), water soluble C and N, C and N of SMB (SMB-C and SMB-N), and glomalin content. The textural fractions (sand, silt, and clay), pH in water, and chemical attributes (organic C, total N, Ca, Mg, Al, P, K, and CEC-cation exchange capacity) were also determined. The areas of alley cropping and pasture showed spatial dependence to the attributes of SOM. The occurrence of high spatial dependence for the attributes associated to microbial biomass in the alley cropping system (C, FLF, SMB-N and respiration), probably was due to external factors related to management, such as: intensive rotational cropping system, diversity of crops and different inputs of organic matter to soil such as pruning material and organic compost.


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2026
Author(s):  
Nikola Koković ◽  
Elmira Saljnikov ◽  
Frank Eulenstein ◽  
Dragan Čakmak ◽  
Aneta Buntić ◽  
...  

Microbially mediated soil organic matter is an extremely sensitive pool that indicates subtle changes in the quality parameters responsible for the soil’s ecological and productive functions. Fifty years of mineral fertilization of a wheat-corn cropping system has a strong impact on soil quality parameters. The goal of the research was to study the dynamics and quality of soil biological parameters affected by increasing amounts of mineral nitrogen. Soil respiration, potentially mineralizable C and N, microbial biomass C and N and light-fraction OM on Cambisol were analyzed in the following treatments: (1) Control (without fertilization); (2) NPK (60/51/67); (3) NPK (90/51/67); (4) NPK (120/51/67); (5) NPK (150/51/67 kg ha−1). The parameters studied were significantly affected by the long-term application of mineral fertilizer compared with both the control and the adjacent native soil. The highest amounts of nitrogen (N150) did not significantly differ from N120 and N90 for most of the parameters studied. Potentially mineralizable C represented the largest labile carbon pool, while microbial biomass N was the largest labile nitrogen pool. The mineralization rates for C and N were oppositely distributed over the seasons. The sensitivity index correlated with the amount of light-fraction OM. The results give a deeper insight into the behavior and distribution of different pools of labile SOM in the agro-landscapes and can serve as a reliable basis for further research focused on zero soil degradation.


1991 ◽  
Vol 71 (3) ◽  
pp. 363-376 ◽  
Author(s):  
C. A. Campbell ◽  
V. O. Biederbeck ◽  
R. P. Zentner ◽  
G. P. Lafond

The effects of crop rotations and various cultural practices on soil organic matter quantity and quality in a Rego, Black Chernozem with a thin A horizon were determined in a long-term study at Indian Head, Saskatchewan. Variables examined included: fertilization, cropping frequency, green manuring, and inclusion of grass-legume hay crop in predominantly spring wheat (Triticum aestivum L.) production systems. Generally, fertilizer increased soil organic C and microbial biomass in continuous wheat cropping but not in fallow-wheat or fallow-wheat-wheat rotations. Soil organic C, C mineralization (respiration) and microbial biomass C and N increased (especially in the 7.5- to 15-cm depth) with increasing frequency of cropping and with the inclusion of legumes as green manure or hay crop in the rotation. The influence of treatments on soil microbial biomass C (BC) was less pronounced than on microbial biomass N. Carbon mineralization was a good index for delineating treatment effects. Analysis of the microbial biomass C/N ratio indicated that the microbial suite may have been modified by the treatments that increased soil organic matter significantly. The treatments had no effect on specific respiratory activity (CO2-C/BC). However, it appeared that the microbial activity, in terms of respiration, was greater for systems with smaller microbial biomass. Changes in amount and quality of the soil organic matter were associated with estimated amount and C and N content of plant residues returned to the soil. Key words: Specific respiratory activity, crop residues, soil quality, crop rotations


2009 ◽  
Vol 89 (3) ◽  
pp. 281-286 ◽  
Author(s):  
Y K Soon ◽  
A Haq ◽  
M A Arshad

The light fraction (LF) has a variable elemental content because it comprises a pool of soil organic matter that is in transition between fresh residues and stable, humified organic matter. Our aim was to assess the influence of time, tillage (CT vs. NT) and straw management (removed or retained) practices on the C and N contents of two particle sizes of LF materials from a Gray Luvisol in Alberta. The LF C and N concentrations were not affected by tillage and straw treatments. The C concentration was higher in LF > 1 mm (coarse LF) than in the < 1 mm LF (fine LF), while the converse was observed for N concentration, resulting in C:N ratios of 45-59 in the coarse fraction and 18-19 for the finer materials. The C concentration of the fine LF decreased and the N concentration increased with time. After 4 yr, LF C and N stocks were higher under NT than under CT mainly because of faster decomposition of litter under CT. Retaining straw resulted in bigger increases in C and N stocks in the coarse LF compared with straw removal; with the fine LF, the C stock decreased more quickly and the N stock increased less rapidly with straw removal. Our results show that time strongly affected the LF C and N stocks and concentrations, and that separating the fraction by size can lead to a more meaningful interpretation of those data.Key words: Light fraction, carbon, nitrogen, tillage, crop residue, straw management


Sign in / Sign up

Export Citation Format

Share Document