scholarly journals Air-Sparging Remediation: A Study on Heterogeneity and Air Mobility Reduction

2001 ◽  
Vol 3 (1) ◽  
Author(s):  
S. S. Di Julio ◽  
A. S. Drucker
2001 ◽  
Author(s):  
Richard L. Johnson ◽  
Paul C. Johnson ◽  
Tim L. Johnson ◽  
Neil Thomas ◽  
Andrea Leason

2002 ◽  
Author(s):  
BATTELLE MEMORIAL INST COLUMBUS OH
Keyword(s):  

2007 ◽  
Vol 7 (3) ◽  
pp. 163-170
Author(s):  
N. Jacimovic ◽  
T. Hosoda ◽  
M. Ivetic ◽  
K. Kishida

The paper presents a mechanistic/deterministic model for simulation of mass removal during air sparging. From the point of numerical modeling, there are two issues considering air sparging: modeling of air flow and distribution and modeling of mass transport and transfer. Several processes, which are commonly neglected, such as air channeling and pollutant advection by the water phase, are taken into account. The numerical model presented in this paper considers all relevant for mass transfer during the air sparging. Model includes hydrodynamics of air and water phase; calculated air volume content is divided into a number of air channels surrounded by the water phase, which is divided into two compartments. First compartment is immobile and it is in contact with air phase, while the second compartment is mobile. This “mobile-immobile” formulation is a common approach for description of solute transport by groundwater. Mass transfer between two water compartments is modeled as a first order kinetic, where the mass transfer coefficient, representing diffusion and advection in the water phase towards the air channels, is parameter needed to be calibrated. Sorption for both water compartments is considered. The adopted model of contaminant evaporation at the air-water interface is verified by comparison with experimental results available from published sources. Model is used for simulation of two-dimensional air sparging laboratory experiment. Good overall agreement is observed. It is showed that the efficiency of air sparging can be influenced by natural groundwater flow.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hamid Khataee ◽  
Istvan Scheuring ◽  
Andras Czirok ◽  
Zoltan Neufeld

AbstractA better understanding of how the COVID-19 pandemic responds to social distancing efforts is required for the control of future outbreaks and to calibrate partial lock-downs. We present quantitative relationships between key parameters characterizing the COVID-19 epidemiology and social distancing efforts of nine selected European countries. Epidemiological parameters were extracted from the number of daily deaths data, while mitigation efforts are estimated from mobile phone tracking data. The decrease of the basic reproductive number ($$R_0$$ R 0 ) as well as the duration of the initial exponential expansion phase of the epidemic strongly correlates with the magnitude of mobility reduction. Utilizing these relationships we decipher the relative impact of the timing and the extent of social distancing on the total death burden of the pandemic.


Author(s):  
Borja Ferrández-Gómez ◽  
Antonio Sánchez ◽  
Juana D. Jordá ◽  
Eva S. Fonfría ◽  
César Bordehore ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Corentin Cot ◽  
Giacomo Cacciapaglia ◽  
Francesco Sannino

AbstractWe employ the Google and Apple mobility data to identify, quantify and classify different degrees of social distancing and characterise their imprint on the first wave of the COVID-19 pandemic in Europe and in the United States. We identify the period of enacted social distancing via Google and Apple data, independently from the political decisions. Our analysis allows us to classify different shades of social distancing measures for the first wave of the pandemic. We observe a strong decrease in the infection rate occurring two to five weeks after the onset of mobility reduction. A universal time scale emerges, after which social distancing shows its impact. We further provide an actual measure of the impact of social distancing for each region, showing that the effect amounts to a reduction by 20–40% in the infection rate in Europe and 30–70% in the US.


Sign in / Sign up

Export Citation Format

Share Document