scholarly journals Porcine Epidemic Diarrhea Virus Surface Decontamination Strategies Using Chemical Sanitizing to Reduce the Quantity of PEDV RNA on Feed Manufacturing Surfaces with Environmental Swabbing

Author(s):  
M. Muckey ◽  
S. S. Dritz ◽  
J. C. Woodworth ◽  
C. R. Stark ◽  
J. Bai ◽  
...  
2016 ◽  
Vol 94 (suppl_2) ◽  
pp. 76-76 ◽  
Author(s):  
L. L. Schumacher ◽  
R. A. Cochrane ◽  
J. C. Woodworth ◽  
A. R. Huss ◽  
C. R. Stark ◽  
...  

PLoS ONE ◽  
2017 ◽  
Vol 12 (1) ◽  
pp. e0169612 ◽  
Author(s):  
Anne R. Huss ◽  
Loni L. Schumacher ◽  
Roger A. Cochrane ◽  
Elizabeth Poulsen ◽  
Jianfa Bai ◽  
...  

Author(s):  
Mary B Muckey ◽  
Cassandra K Jones ◽  
Jason C Woodworth ◽  
Chad B Paulk ◽  
Steve S Dritz ◽  
...  

Abstract Porcine epidemic diarrhea virus (PEDV) is a possible biological hazard in feed mills. If the virus enters a feed mill, it becomes widely distributed and is difficult to decontaminate from both feed contact and non-feed contact surfaces. The objective of this study was to evaluate a variety of liquid and dry decontamination treatments that could be used to reduce the amount of PEDV found on feed manufacturing surfaces. This experiment was designed as a 5 × 10 factorial with 5 different feed manufacturing surfaces and 10 decontamination treatments with 3 replicates of each combination. Surfaces included stainless steel, solid polyethylene, woven polypropylene tote bag, rubber, and sealed concrete coupons. One mL (1×10 5 TCID50/mL) of stock PEDV was applied to each surface and allowed to dry completely for 60 min. Next, for decontamination requiring surface application, the application was performed and allowed 15 min contact time. The quantity of PEDV RNA was determined using quantitative reverse transcription PCR. A decontamination treatment × surface interaction was observed (P < 0.0001), indicating the efficacy of treatment is dependent upon the surface in which it is applied. Within the cement surfaces, the sodium hypochlorite resulted in the greatest (P < 0.05) cycle threshold (Ct) value, followed by formaldehyde which had a greater (P < 0.05) Ct value compared to remaining treatments. Within polyethylene, rubber, and stainless steel surfaces, the formaldehyde treated surfaces had the greatest Ct values (P < 0.05), followed by the sodium hypochlorite treatment, with other treatments all having lower Ct values (P < 0.05). For the woven polyethylene surfaces, the formaldehyde and sodium hypochlorite treatments had greater Ct values compared to all other treatments (P < 0.05). Additional research is necessary to identify the role of decontamination treatment on PEDV infectivity and develop methods for decontamination of feed manufacturing facilities.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Gustavo Machado ◽  
Carles Vilalta ◽  
Mariana Recamonde-Mendoza ◽  
Cesar Corzo ◽  
Montserrat Torremorell ◽  
...  

2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 216-217
Author(s):  
O L Harrison ◽  
G E Nichols ◽  
J T Gebhardt ◽  
Cassandra K Jones ◽  
Jason C Woodworth ◽  
...  

Abstract Recent research has demonstrated that swine viruses can be transmitted via feed. Chemical feed additives have been suggested for the mitigation of these viruses in complete feed. Therefore, the objective of this study was to evaluate the efficacy of a commercially available formaldehyde-based feed additive, medium chain fatty acid blend (MCFA), and commercially available fatty acid-based products for mitigation of porcine epidemic diarrhea virus (PEDV) and porcine reproductive and respiratory syndrome virus (PRRSV) in a feed matrix. Treatments consisted of: 1) non-treated positive control, 2) 0.33% commercial formaldehyde-based product (Sal Curb; Kemin Industries, Inc.; Des Moines, IA), 3) 0.5% MCFA blend (1:1:1 ratio of C6:0, C8:0, and C10:0, Sigma Aldrich, St. Louis, MO), 4) 0.25%, 5) 0.5%, or 6) 1% of commercial dry mono and diglyceride-based product (Furst Strike; Furst-McNess Company, Freeport, IL), 7) 0.25%, 8) 0.5%, or 9) 1% of commercial dry mono and diglyceride-based product (Furst Protect; Furst-McNess Company, Freeport, IL), 10) 0.25%, 11) 0.5%, or 12) 1% dry mono and diglyceride-based experimental product (Furst-McNess Company, Freeport, IL) with 3 replications/treatment. Treatments were applied to complete swine feed before inoculation with 106 TCID50/g of feed with PEDV or PRRSV. Post inoculation feed was held at ambient temperature for 24 h before being analyzed via qRT-PCR. The analyzed values represent the cycle threshold. Formaldehyde and MCFA decreased (P < 0.05) the detectable RNA of PEDV and PRRSV compared to all other treatments. Furst Strike, Furst Protect, and the experimental product did not significantly impact detectability of PEDV or PRRSV RNA. In conclusion, MCFA and formaldehyde treatments are effective at reducing detection of RNA from PEDV and PRRSV in feed.


Sign in / Sign up

Export Citation Format

Share Document