On the Group of a Directed Graph

1966 ◽  
Vol 18 ◽  
pp. 211-220 ◽  
Author(s):  
Robert L. Hemminger

In 1938, Frucht (2) proved that for any given finite group G there exists a finite symmetric graph X such that G(X) is abstractly isomorphic to G. Since G(X) is a permutation group, it is natural to ask the following related question : If P is a given finite permutation group, does there exist a symmetric (and more generally a directed) graph X such that G(X) and P are isomorphic (see Convention below) as permutation groups? The answer for the symmetric case is negative as seen in (3) and more recently in (1). It is the purpose of this paper to deal with this problem further, especially in the directed case. In §3, we supplement Kagno's results (3, pp. 516-520) for symmetric graphs by giving the corresponding results for directed graphs.

2021 ◽  
pp. 1-40
Author(s):  
NICK GILL ◽  
BIANCA LODÀ ◽  
PABLO SPIGA

Abstract Let G be a permutation group on a set $\Omega $ of size t. We say that $\Lambda \subseteq \Omega $ is an independent set if its pointwise stabilizer is not equal to the pointwise stabilizer of any proper subset of $\Lambda $ . We define the height of G to be the maximum size of an independent set, and we denote this quantity $\textrm{H}(G)$ . In this paper, we study $\textrm{H}(G)$ for the case when G is primitive. Our main result asserts that either $\textrm{H}(G)< 9\log t$ or else G is in a particular well-studied family (the primitive large–base groups). An immediate corollary of this result is a characterization of primitive permutation groups with large relational complexity, the latter quantity being a statistic introduced by Cherlin in his study of the model theory of permutation groups. We also study $\textrm{I}(G)$ , the maximum length of an irredundant base of G, in which case we prove that if G is primitive, then either $\textrm{I}(G)<7\log t$ or else, again, G is in a particular family (which includes the primitive large–base groups as well as some others).


2002 ◽  
Vol 65 (2) ◽  
pp. 277-288 ◽  
Author(s):  
Gil Kaplan ◽  
Arieh Lev

Let G be a transitive permutation group acting on a finite set of order n. We discuss certain types of transversals for a point stabiliser A in G: free transversals and global transversals. We give sufficient conditions for the existence of such transversals, and show the connection between these transversals and combinatorial problems of decomposing the complete directed graph into edge disjoint cycles. In particular, we classify all the inner-transitive Oberwolfach factorisations of the complete directed graph. We mention also a connection to Frobenius theorem.


1994 ◽  
Vol 36 (3) ◽  
pp. 301-308 ◽  
Author(s):  
J. M. Burns ◽  
B. Goldsmith ◽  
B. Hartley ◽  
R. Sandling

In [6], Wong defined a quasi-permutation group of degree n to be a finite group G of automorphisms of an n-dimensional complex vector space such that every element of G has non-negative integral trace. The terminology derives from the fact that if G is a finite group of permutations of a set ω of size n, and we think of G as acting on the complex vector space with basis ω, then the trace of an element g ∈ G is equal to the number of points of ω fixed by g. In [6] and [7], Wong studied the extent to which some facts about permutation groups generalize to the quasi-permutation group situation. Here we investigate further the analogy between permutation groups and quasipermutation groups by studying the relation between the minimal degree of a faithful permutation representation of a given finite group G and the minimal degree of a faithful quasi-permutation representation. We shall often prefer to work over the rational field rather than the complex field.


1964 ◽  
Vol 4 (2) ◽  
pp. 174-178 ◽  
Author(s):  
W. J. Wong

A quasi-permutation group of degree n was defined in [3] to be a finite group with a faithful representation of degree n whose character has only non-negative rational integral values. If G is such a group, then the following simple properties of permutation groups of degree n were proved to hold also for G:(i) the order of G is a divisor of the order of the symmetric group Sn of degree n; and (ii) if G is a p-group and n < p2, then G has exponent at most p and derived length at most 1 (i.e. G is elementary Abelian).


2007 ◽  
Vol 91 (522) ◽  
pp. 493-499
Author(s):  
Mike Pearson ◽  
Ian Short

Certain numeric puzzles, known as ‘magic letters’, each have a finite permutation group associated with them in a natural manner. We describe how the isomorphism type of these permutation groups relates to the structure of the magic letters.


2015 ◽  
Vol 93 (1) ◽  
pp. 13-18
Author(s):  
M. REZA SALARIAN

Let $G$ be a finite group and ${\rm\Gamma}$ a $G$-symmetric graph. Suppose that $G$ is imprimitive on $V({\rm\Gamma})$ with $B$ a block of imprimitivity and ${\mathcal{B}}:=\{B^{g};g\in G\}$ a system of imprimitivity of $G$ on $V({\rm\Gamma})$. Define ${\rm\Gamma}_{{\mathcal{B}}}$ to be the graph with vertex set ${\mathcal{B}}$ such that two blocks $B,C\in {\mathcal{B}}$ are adjacent if and only if there exists at least one edge of ${\rm\Gamma}$ joining a vertex in $B$ and a vertex in $C$. Xu and Zhou [‘Symmetric graphs with 2-arc-transitive quotients’, J. Aust. Math. Soc. 96 (2014), 275–288] obtained necessary conditions under which the graph ${\rm\Gamma}_{{\mathcal{B}}}$ is 2-arc-transitive. In this paper, we completely settle one of the cases defined by certain parameters connected to ${\rm\Gamma}$ and ${\mathcal{B}}$ and show that there is a unique graph corresponding to this case.


1998 ◽  
Vol 57 (3) ◽  
pp. 493-495
Author(s):  
John Cossey

If G is a finite permutation group of degree d and N is a normal subgroup of G, Derek Holt has given conditions which show that in some important special cases the least degree of a faithful permutation representation of the quotient G/N will be no larger than d. His conditions do not apply in all cases of interest and he remarks that it would be interesting to know if G/F(G) has a faithful representation of degree no larger than d (where F(G) is the Fitting subgroup of G). We prove in this note that this is the case.


1978 ◽  
Vol 26 (1) ◽  
pp. 57-58
Author(s):  
G. P. Monro ◽  
D. E. Taylor

AbstractWe present a direct combinatorial proof of the characterization of the degree of transivity of a finite permutation group in terms of the Bell numbers.Subject classification (Amer. Math.Soc. (MOS) 1970): 20 B 20.


1984 ◽  
Vol 16 (3) ◽  
pp. 656-666 ◽  
Author(s):  
Bernard Ycart

We give here concrete formulas relating the transition generatrix functions of any random walk on a finite group to the irreducible representations of this group. Some examples of such explicit calculations for the permutation groups A4, S4, and A5 are included.


Sign in / Sign up

Export Citation Format

Share Document