Magic letter groups

2007 ◽  
Vol 91 (522) ◽  
pp. 493-499
Author(s):  
Mike Pearson ◽  
Ian Short

Certain numeric puzzles, known as ‘magic letters’, each have a finite permutation group associated with them in a natural manner. We describe how the isomorphism type of these permutation groups relates to the structure of the magic letters.

2021 ◽  
pp. 1-40
Author(s):  
NICK GILL ◽  
BIANCA LODÀ ◽  
PABLO SPIGA

Abstract Let G be a permutation group on a set $\Omega $ of size t. We say that $\Lambda \subseteq \Omega $ is an independent set if its pointwise stabilizer is not equal to the pointwise stabilizer of any proper subset of $\Lambda $ . We define the height of G to be the maximum size of an independent set, and we denote this quantity $\textrm{H}(G)$ . In this paper, we study $\textrm{H}(G)$ for the case when G is primitive. Our main result asserts that either $\textrm{H}(G)< 9\log t$ or else G is in a particular well-studied family (the primitive large–base groups). An immediate corollary of this result is a characterization of primitive permutation groups with large relational complexity, the latter quantity being a statistic introduced by Cherlin in his study of the model theory of permutation groups. We also study $\textrm{I}(G)$ , the maximum length of an irredundant base of G, in which case we prove that if G is primitive, then either $\textrm{I}(G)<7\log t$ or else, again, G is in a particular family (which includes the primitive large–base groups as well as some others).


1966 ◽  
Vol 18 ◽  
pp. 211-220 ◽  
Author(s):  
Robert L. Hemminger

In 1938, Frucht (2) proved that for any given finite group G there exists a finite symmetric graph X such that G(X) is abstractly isomorphic to G. Since G(X) is a permutation group, it is natural to ask the following related question : If P is a given finite permutation group, does there exist a symmetric (and more generally a directed) graph X such that G(X) and P are isomorphic (see Convention below) as permutation groups? The answer for the symmetric case is negative as seen in (3) and more recently in (1). It is the purpose of this paper to deal with this problem further, especially in the directed case. In §3, we supplement Kagno's results (3, pp. 516-520) for symmetric graphs by giving the corresponding results for directed graphs.


1998 ◽  
Vol 57 (3) ◽  
pp. 493-495
Author(s):  
John Cossey

If G is a finite permutation group of degree d and N is a normal subgroup of G, Derek Holt has given conditions which show that in some important special cases the least degree of a faithful permutation representation of the quotient G/N will be no larger than d. His conditions do not apply in all cases of interest and he remarks that it would be interesting to know if G/F(G) has a faithful representation of degree no larger than d (where F(G) is the Fitting subgroup of G). We prove in this note that this is the case.


1978 ◽  
Vol 26 (1) ◽  
pp. 57-58
Author(s):  
G. P. Monro ◽  
D. E. Taylor

AbstractWe present a direct combinatorial proof of the characterization of the degree of transivity of a finite permutation group in terms of the Bell numbers.Subject classification (Amer. Math.Soc. (MOS) 1970): 20 B 20.


2002 ◽  
Vol 65 (2) ◽  
pp. 277-288 ◽  
Author(s):  
Gil Kaplan ◽  
Arieh Lev

Let G be a transitive permutation group acting on a finite set of order n. We discuss certain types of transversals for a point stabiliser A in G: free transversals and global transversals. We give sufficient conditions for the existence of such transversals, and show the connection between these transversals and combinatorial problems of decomposing the complete directed graph into edge disjoint cycles. In particular, we classify all the inner-transitive Oberwolfach factorisations of the complete directed graph. We mention also a connection to Frobenius theorem.


10.37236/3262 ◽  
2013 ◽  
Vol 20 (3) ◽  
Author(s):  
Simon R. Blackburn

A rack of order $n$ is a binary operation $\vartriangleright$ on a set $X$ of cardinality $n$, such that right multiplication is an automorphism. More precisely, $(X,\vartriangleright)$ is a rack provided that the map $x\mapsto x\vartriangleright y$ is a bijection for all $y\in X$, and $(x\vartriangleright y)\vartriangleright z=(x\vartriangleright z)\vartriangleright (y\vartriangleright z)$ for all $x,y,z\in X$.The paper provides upper and lower bounds of the form $2^{cn^2}$ on the number of isomorphism classes of racks of order $n$. Similar results on the number of isomorphism classes of quandles and kei are obtained. The results of the paper are established by first showing how an arbitrary rack is related to its operator group (the permutation group on $X$ generated by the maps $x\mapsto x\vartriangleright y$ for $y\in Y$), and then applying some of the theory of permutation groups. The relationship between a rack and its operator group extends results of Joyce and of Ryder; this relationship might be of independent interest.


2019 ◽  
Vol 19 (12) ◽  
pp. 2150005
Author(s):  
Yong Yang

Let [Formula: see text] be a permutation group of degree [Formula: see text] and let [Formula: see text] denote the number of set-orbits of [Formula: see text]. We determine [Formula: see text] over all groups [Formula: see text] that satisfy certain restrictions on composition factors.


2012 ◽  
Vol 92 (1) ◽  
pp. 127-136 ◽  
Author(s):  
CHERYL E. PRAEGER ◽  
CSABA SCHNEIDER

AbstractWe consider the wreath product of two permutation groups G≤Sym Γ and H≤Sym Δ as a permutation group acting on the set Π of functions from Δ to Γ. Such groups play an important role in the O’Nan–Scott theory of permutation groups and they also arise as automorphism groups of graph products and codes. Let X be a subgroup of Sym Γ≀Sym Δ. Our main result is that, in a suitable conjugate of X, the subgroup of SymΓ induced by a stabiliser of a coordinate δ∈Δ only depends on the orbit of δ under the induced action of X on Δ. Hence, if X is transitive on Δ, then X can be embedded into the wreath product of the permutation group induced by the stabiliser Xδ on Γ and the permutation group induced by X on Δ. We use this result to describe the case where X is intransitive on Δ and offer an application to error-correcting codes in Hamming graphs.


Sign in / Sign up

Export Citation Format

Share Document