A Note on Complementary Subspaces in c0

1972 ◽  
Vol 24 (3) ◽  
pp. 537-540
Author(s):  
I. D. Berg

A well known result of A. Pelcynski [2] states that each subspace of c0 which is isomorphic to c0 and of infinite deficiency has a complementary subspace which is itself isomorphic to c0. We are concerned here with the question of when there exists R, a subset of the integers, such that the complementary subspace X can actually be taken to be C0(R). That is, we are concerned with determining when the basis vectors for X can be chosen as a subset of the usual basis vectors for c0. If T: C0 → C0 is norm increasing and ‖T‖ < 2, it is not hard to see, as we shall show, that Tco admits a complement of the form C0(R). However, this bound cannot be improved; indeed, it is possible to construct norm increasing T: C0 → C0 such that ‖T‖ = 2 and yet Tc0 admits no such complement. The construction of such a T is the main point of this note. This construction also enables us to dispose of a speculation of ours in [1].

1987 ◽  
Vol 109 (1) ◽  
pp. 65-69 ◽  
Author(s):  
K. W. Matta

A technique for the selection of dynamic degrees of freedom (DDOF) of large, complex structures for dynamic analysis is described and the formulation of Ritz basis vectors for static condensation and component mode synthesis is presented. Generally, the selection of DDOF is left to the judgment of engineers. For large, complex structures, however, a danger of poor or improper selection of DDOF exists. An improper selection may result in singularity of the eigenvalue problem, or in missing some of the lower frequencies. This technique can be used to select the DDOF to reduce the size of large eigenproblems and to select the DDOF to eliminate the singularities of the assembled eigenproblem of component mode synthesis. The execution of this technique is discussed in this paper. Examples are given for using this technique in conjunction with a general purpose finite element computer program GENSAM[1].


2014 ◽  
Vol 7 (4) ◽  
pp. 1767-1778 ◽  
Author(s):  
Y. Li ◽  
B. Wang ◽  
D. Wang ◽  
J. Li ◽  
L. Dong

Abstract. We have designed an orthogonal curvilinear terrain-following coordinate (the orthogonal σ coordinate, or the OS coordinate) to reduce the advection errors in the classic σ coordinate. First, we rotate the basis vectors of the z coordinate in a specific way in order to obtain the orthogonal, terrain-following basis vectors of the OS coordinate, and then add a rotation parameter b to each rotation angle to create the smoother vertical levels of the OS coordinate with increasing height. Second, we solve the corresponding definition of each OS coordinate through its basis vectors; and then solve the 3-D coordinate surfaces of the OS coordinate numerically, therefore the computational grids created by the OS coordinate are not exactly orthogonal and its orthogonality is dependent on the accuracy of a numerical method. Third, through choosing a proper b, we can significantly smooth the vertical levels of the OS coordinate over a steep terrain, and, more importantly, we can create the orthogonal, terrain-following computational grids in the vertical through the orthogonal basis vectors of the OS coordinate, which can reduce the advection errors better than the corresponding hybrid σ coordinate. However, the convergence of the grid lines in the OS coordinate over orography restricts the time step and increases the numerical errors. We demonstrate the advantages and the drawbacks of the OS coordinate relative to the hybrid σ coordinate using two sets of 2-D linear advection experiments.


2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Hiroshi Miki ◽  
Satoshi Tsujimoto ◽  
Luc Vinet

It is shown that the hopping of a single excitation on certain triangular spin lattices with non-uniform couplings and local magnetic fields can be described as the projections of quantum walks on graphs of the ordered Hamming scheme of depth 2. For some values of the parameters the models exhibit perfect state transfer between two summits of the lattice. Fractional revival is also observed in some instances. The bivariate Krawtchouk polynomials of the Tratnik type that form the eigenvalue matrices of the ordered Hamming scheme of depth 2 give the overlaps between the energy eigenstates and the occupational basis vectors.


2018 ◽  
Vol 10 (01) ◽  
pp. 1850002 ◽  
Author(s):  
Kenji Kume ◽  
Naoko Nose-Togawa

Singular spectrum analysis (SSA) is a nonparametric spectral decomposition of a time series into arbitrary number of interpretable components. It involves a single parameter, window length [Formula: see text], which can be adjusted for the specific purpose of the analysis. After the decomposition of a time series, similar series are grouped to obtain the interpretable components by consulting with the [Formula: see text]-correlation matrix. To accomplish better resolution of the frequency spectrum, a larger window length [Formula: see text] is preferable and, in this case, the proper grouping is crucial for making the SSA decomposition. When the [Formula: see text]-correlation matrix does not have block-diagonal form, however, it is hard to adequately carry out the grouping. To avoid this, we propose a novel algorithm for the adaptive orthogonal decomposition of the time series based on the SSA scheme. The SSA decomposition sequences of the time series are recombined and the linear coefficients are determined so as to maximizing its squared norm. This results in an eigenvalue problem of the Gram matrix and we can obtain the orthonormal basis vectors for the [Formula: see text]-dimensional subspace. By the orthogonal projection of the original time series on these basis vectors, we can obtain adaptive orthogonal decomposition of the time series without the redundancy of the original SSA decomposition.


2021 ◽  
pp. 121-132
Author(s):  
Andrew M. Steane

The connection and the covariant derivative are treated. Connection coefficients are introduced in their role of expressing the change in the coordinate basis vectors between neighbouring points. The covariant derivative of a vector is then defined. Next we relate the connection to the metric, and obtain the Levi-Civita connection. The logic concerning what is defined and what is derived is explained carefuly. The notion of a derivative along a curve is defined. The emphasis through is on clarity and avoiding confusions arising from the plethora of concepts and symbols.


2015 ◽  
Vol 55 (2) ◽  
Author(s):  
Adolfas Dargys

To have a closed system, the Maxwell electromagnetic equations should be supplemented by constitutive relations which describe medium properties and connect primary fields (E, B) with secondary ones (D, H). J.W. Gibbs and O. Heaviside introduced the basis vectors {i, j, k} to represent the fields and constitutive relations in the three-dimensional vectorial space. In this paper the constitutive relations are presented in a form of Cl3,0 algebra which describes the vector space by three basis vectors {σ1, σ2, σ3} that satisfy Pauli commutation relations. It is shown that the classification of electromagnetic wave propagation phenomena with the help of constitutive relations in this case comes from the structure of Cl3,0 itself. Concrete expressions for classical constitutive relations are presented including electromagnetic wave propagation in a moving dielectric.


Sign in / Sign up

Export Citation Format

Share Document