Expansions of Arbitrary Analytic Functions in Series of Exponentials

1981 ◽  
Vol 33 (2) ◽  
pp. 347-356
Author(s):  
D. G. Dickson

Let ϕ ≠ 0 be an entire function of one complex variable and of exponential type. Let B denote the set of all monomial exponentials of the form zneζ where ζ is a zero of ϕ of order greater than h. If R is a simply connected plane region and H(R) denotes the space of functions analytic in R with the topology of uniform convergence on compacta, then ϕ can be considered as an element of the topological dual H′(R) if the Borel transform of ϕ is analytic on , the complement of R. The duality is given bywhere C is a simple closed curve in the common region of analyticity of ƒ and , and C winds once around the complement of a set in which is analytic.

1965 ◽  
Vol 17 ◽  
pp. 373-382 ◽  
Author(s):  
R. C. Mullin

Let R be a simply connected closed region in the Euclidean plane E2 whose boundary is a simple closed curve C. A triangular map, or simply "map," is a representation of R as the union of a finite number of disjoint point sets called cells, where the cells are of three kinds, vertices, edges, and faces (said to be of dimension 0, 1, and 2, respectively), where each vertex is a single point, each edge is an open arc whose ends are distinct vertices, and each face is a simply connected open region whose boundary consists of the closure of the union of three edges. Two cells of different dimension are incident if one is contained in the boundary of the other.


Author(s):  
Narjis A. Dawood ◽  
Suaad G. Gasim

Jordan  curve  theorem  is  one  of  the  classical  theorems  of  mathematics, it states  the  following :  If    is a graph of  a  simple  closed curve  in  the complex plane the complement  of   is the union of  two regions,  being the common  boundary of the two regions. One of  the region   is  bounded and the other is unbounded. We introduced in this paper one of Jordan's theorem generalizations. A new type of space is discussed with some properties and new examples. This new space called Contractible -space.


Author(s):  
W. B. R. Lickorish

In an earlier paper (1) the idea of a c-homeomorphism on a 2-manifold was introduced; it can be described in the following way. Let the 2-manifold M contain an annulus, A, one of the boundary components of which is a simple closed curve c. There is a homeomorphism of A to itself, fixed on the boundary of A, which sends radial arcs onto arcs which spiral once around A (see Fig. 1). This can be extended toa homeomorphism of M to itself, by the identity on M — A. Intuitively this homeomorphism can be thought of as the process of cutting M along c, twisting one of the now free ends, and then glueing together again. The c-homeomorphism has, in fact, only been defined up to isotopy, but as we shall only be considering homeomorphisms up to isotopy, this is sufficient. It was shown in (1) that any orientation preserving homeomorphism of a closed orientable 2-manifold can be expressed as a product of c-homeomorphisms. In that case, a c-homeomorphism could be associated with any simple closed path on such a manifold, but on a non-orientable 2-manifold a c-homeomorphism can only be associated with a simple closed orientation preserving path. It is this fact that invalidates many of the lemmas of (1) if they are regarded as applying to the non-orientable case. The purpose of this paper is to show that (Theorem 1) c-homeomorphisms do not generate the group of all homeomorphisms of a closed nonorientable 2-manifold, but that if another elementary type of homeomorphism, the Y-homeomorphism, is introduced, then c- and Y-homeomorphisms together do generate this group (Theorem 2). This result leads to a discussion of non-orientable 3-manifolds, to a result analogous to that obtained for orientable 3-manifolds in (1), and to a new proof of the fact that any 3-manifold bounds a 4-manifold. Throughout this paper all manifolds will be considered as possessing an underlying combinatorial structure, all paths will be polygonal with respect to some subdivision of the manifold containing them, and all homeomorphisms and isotopies will be piecewise linear.


2020 ◽  
pp. 1-19
Author(s):  
L. C. Hoehn ◽  
L. G. Oversteegen ◽  
E. D. Tymchatyn

Abstract Let $\Omega $ be a connected open set in the plane and $\gamma : [0,1] \to \overline {\Omega }$ a path such that $\gamma ((0,1)) \subset \Omega $ . We show that the path $\gamma $ can be “pulled tight” to a unique shortest path which is homotopic to $\gamma $ , via a homotopy h with endpoints fixed whose intermediate paths $h_t$ , for $t \in [0,1)$ , satisfy $h_t((0,1)) \subset \Omega $ . We prove this result even in the case when there is no path of finite Euclidean length homotopic to $\gamma $ under such a homotopy. For this purpose, we offer three other natural, equivalent notions of a “shortest” path. This work generalizes previous results for simply connected domains with simple closed curve boundaries.


1905 ◽  
Vol 40 (3) ◽  
pp. 615-629
Author(s):  
Thomas Muir

(1) This is a subject to which very little study has been directed. The first to enunciate any proposition regarding it was Jacobi; but the solitary result which he reached received no attention from mathematicians,—certainly no fruitful attention,—during seventy years following the publication of it.Jacobi was concerned with a problem regarding the partition of a fraction with composite denominator (u1 − t1) (u2 − t2) … into other fractions whose denominators are factors of the original, where u1, u2, … are linear homogeneous functions of one and the same set of variables. The specific character of the partition was only definable by viewing the given fraction (u1−t1)−1 (u2−t2)−1…as expanded in series form, it being required that each partial fraction should be the aggregate of a certain set of terms in this series. Of course the question of the order of the terms in each factor of the original denominator had to be attended to at the outset, since the expansion for (a1x+b1y+c1z−t)−1 is not the same as for (b1y+c1z+a1x−t)−1. Now one general proposition to which Jacobi was led in the course of this investigation was that the coefficient ofx1−1x2−1x3−1…in the expansion ofy1−1u2−1u3−1…, whereis |a1b2c3…|−1, provided that in energy case the first term of uris that containing xr.


1994 ◽  
Vol 36 (1) ◽  
pp. 77-80 ◽  
Author(s):  
Leung-Fu Cheung ◽  
Pui-Fai Leung

For each p ∈ [2, ∞)a p-harmonic map f:Mm→Nn is a critical point of the p-energy functionalwhere Mm is a compact and Nn a complete Riemannian manifold of dimensions m and n respectively. In a recent paper [3], Takeuchi has proved that for a certain class of simply-connected δ-pinched Nn and certain type of hypersurface Nn in ℝn+1, the only stable p-harmonic maps for any compact Mm are the constant maps. Our purpose in this note is to establish the following theorem which complements Takeuchi's results.


2002 ◽  
Vol 132 (3) ◽  
pp. 531-544 ◽  
Author(s):  
ZHENG JIAN-HUA

We investigate uniform perfectness of the Julia set of a transcendental meromorphic function with finitely many poles and prove that the Julia set of such a meromorphic function is not uniformly perfect if it has only bounded components. The Julia set of an entire function is uniformly perfect if and only if the Julia set including infinity is connected and every component of the Fatou set is simply connected. Furthermore if an entire function has a finite deficient value in the sense of Nevanlinna, then it has no multiply connected stable domains. Finally, we give some examples of meromorphic functions with uniformly perfect Julia sets.


1966 ◽  
Vol 33 (1) ◽  
pp. 68-74 ◽  
Author(s):  
Joseph F. Shelley ◽  
Yi-Yuan Yu

Presented in this paper is a solution in series form for the stresses in an infinite elastic solid which contains two rigid spherical inclusions of the same size. The stress field at infinity is assumed to be either hydrostatic tension or uniaxial tension in the direction of the common axis of the inclusions. The solution is based upon the Papkovich-Boussinesq displacement-function approach and makes use of the spherical dipolar harmonics developed by Sternberg and Sadowsky. The problem is closely related to, but turns out to be much more involved than, the corresponding problem of two spherical cavities solved by these authors.


2000 ◽  
Vol 43 (3) ◽  
pp. 511-528 ◽  
Author(s):  
Jörg Eschmeier

AbstractLet T and S be quasisimilar operators on a Banach space X. A well-known result of Herrero shows that each component of the essential spectrum of T meets the essential spectrum of S. Herrero used that, for an n-multicyclic operator, the components of the essential resolvent set with maximal negative index are simply connected. We give new and conceptually simpler proofs for both of Herrero's results based on the observation that on the essential resolvent set of T the section spaces of the sheavesare complete nuclear spaces that are topologically dual to each other. Other concrete applications of this result are given.


Sign in / Sign up

Export Citation Format

Share Document