Explicit Hyperelliptic Curves With Real Multiplication and Permutation Polynomials

1991 ◽  
Vol 43 (5) ◽  
pp. 1055-1064 ◽  
Author(s):  
Walter Tautz ◽  
Jaap Top ◽  
Alain Verberkmoes

AbstractThe aim of this paper is to present a very explicit construction of one parameter families of hyperelliptic curves C of genus (p−1 )/ 2, for any odd prime number p, with the property that the endomorphism algebra of the jacobian of C contains the real subfield Q(2 cos(2π/p)) of the cyclotomic field Q(e2π i/p).Two proofs of the fact that the constructed curves have this property will be given. One is by providing a double cover with the pth roots of unity in its automorphism group. The other is by explicitly writing down equations of a correspondence in C x C which defines multiplication by 2cos(2π/ p) on the jacobian of C. As a byproduct we obtain polynomials which define bijective maps Fℓ → Fℓ for all prime numbers in certain congruence classes.

2010 ◽  
Vol 21 (07) ◽  
pp. 939-949 ◽  
Author(s):  
KEIJI MATSUMOTO ◽  
TOMOHIDE TERASOMA

In this paper, we define a generalized arithmetic-geometric mean μg among 2g terms motivated by 2τ-formulas of theta constants. By using Thomae's formula, we give two expressions of μg when initial terms satisfy some conditions. One is given in terms of period integrals of a hyperelliptic curve C of genus g. The other is by a period integral of a certain Calabi–Yau g-fold given as a double cover of the g-dimensional projective space Pg.


10.37236/589 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Oliver Schnetz

We consider the number $\bar N(q)$ of points in the projective complement of graph hypersurfaces over $\mathbb{F}_q$ and show that the smallest graphs with non-polynomial $\bar N(q)$ have 14 edges. We give six examples which fall into two classes. One class has an exceptional prime 2 whereas in the other class $\bar N(q)$ depends on the number of cube roots of unity in $\mathbb{F}_q$. At graphs with 16 edges we find examples where $\bar N(q)$ is given by a polynomial in $q$ plus $q^2$ times the number of points in the projective complement of a singular K3 in $\mathbb{P}^3$. In the second part of the paper we show that applying momentum space Feynman-rules over $\mathbb{F}_q$ lets the perturbation series terminate for renormalizable and non-renormalizable bosonic quantum field theories.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Eric Goles ◽  
Ivan Slapničar ◽  
Marco A. Lardies

Real-world examples of periodical species range from cicadas, whose life cycles are large prime numbers, like 13 or 17, to bamboos, whose periods are large multiples of small primes, like 40 or even 120. The periodicity is caused by interaction of species, be it a predator-prey relationship, symbiosis, commensalism, or competition exclusion principle. We propose a simple mathematical model, which explains and models all those principles, including listed extremal cases. This rather universal, qualitative model is based on the concept of a local fitness function, where a randomly chosen new period is selected if the value of the global fitness function of the species increases. Arithmetically speaking, the different interactions are related to only four principles: given a couple of integer periods either (1) their greatest common divisor is one, (2) one of the periods is prime, (3) both periods are equal, or (4) one period is an integer multiple of the other.


2016 ◽  
Vol 12 (06) ◽  
pp. 1519-1528
Author(s):  
Kwang Yon Kim ◽  
Ryul Kim ◽  
Jin Song Kim

In order to extend the results of [Formula: see text] in [P. Das, The number of permutation polynomials of a given degree over a finite field, Finite Fields Appl. 8(4) (2002) 478–490], where [Formula: see text] is a prime, to arbitrary finite fields [Formula: see text], we find a formula for the number of permutation polynomials of degree [Formula: see text] over a finite field [Formula: see text], which has [Formula: see text] elements, in terms of the permanent of a matrix. We write down an expression for the number of permutation polynomials of degree [Formula: see text] over a finite field [Formula: see text], using the permanent of a matrix whose entries are [Formula: see text]th roots of unity and using this we obtain a nontrivial bound for the number. Finally, we provide a formula for the number of permutation polynomials of degree [Formula: see text] less than [Formula: see text].


2016 ◽  
Vol 19 (A) ◽  
pp. 220-234 ◽  
Author(s):  
David Harvey ◽  
Maike Massierer ◽  
Andrew V. Sutherland

Let$C/\mathbf{Q}$be a curve of genus three, given as a double cover of a plane conic. Such a curve is hyperelliptic over the algebraic closure of$\mathbf{Q}$, but may not have a hyperelliptic model of the usual form over$\mathbf{Q}$. We describe an algorithm that computes the local zeta functions of$C$at all odd primes of good reduction up to a prescribed bound$N$. The algorithm relies on an adaptation of the ‘accumulating remainder tree’ to matrices with entries in a quadratic field. We report on an implementation and compare its performance to previous algorithms for the ordinary hyperelliptic case.


2019 ◽  
Vol 7 (1) ◽  
pp. 1-19
Author(s):  
Kazumasa Nomura ◽  
Paul Terwilliger

Abstract Let F denote a field and let V denote a vector space over F with finite positive dimension. Consider a pair A, A* of diagonalizable F-linear maps on V, each of which acts on an eigenbasis for the other one in an irreducible tridiagonal fashion. Such a pair is called a Leonard pair. We consider the self-dual case in which there exists an automorphism of the endomorphism algebra of V that swaps A and A*. Such an automorphism is unique, and called the duality A ↔ A*. In the present paper we give a comprehensive description of this duality. In particular,we display an invertible F-linearmap T on V such that the map X → TXT−1is the duality A ↔ A*. We express T as a polynomial in A and A*. We describe how T acts on 4 flags, 12 decompositions, and 24 bases for V.


2015 ◽  
Vol 151 (12) ◽  
pp. 2329-2375 ◽  
Author(s):  
Spencer Bloch ◽  
Matt Kerr ◽  
Pierre Vanhove

We study the Feynman integral for the three-banana graph defined as the scalar two-point self-energy at three-loop order. The Feynman integral is evaluated for all identical internal masses in two space-time dimensions. Two calculations are given for the Feynman integral: one based on an interpretation of the integral as an inhomogeneous solution of a classical Picard–Fuchs differential equation, and the other using arithmetic algebraic geometry, motivic cohomology, and Eisenstein series. Both methods use the rather special fact that the Feynman integral is a family of regulator periods associated to a family of$K3$surfaces. We show that the integral is given by a sum of elliptic trilogarithms evaluated at sixth roots of unity. This elliptic trilogarithm value is related to the regulator of a class in the motivic cohomology of the$K3$family. We prove a conjecture by David Broadhurst which states that at a special kinematical point the Feynman integral is given by a critical value of the Hasse–Weil$L$-function of the$K3$surface. This result is shown to be a particular case of Deligne’s conjectures relating values of$L$-functions inside the critical strip to periods.


2012 ◽  
Vol 23 (12) ◽  
pp. 1250125
Author(s):  
INDRANIL BISWAS ◽  
JACQUES HURTUBISE ◽  
A. K. RAINA

Given a holomorphic line bundle L on a compact complex torus A, there are two naturally associated holomorphic ΩA-torsors over A: one is constructed from the Atiyah exact sequence for L, and the other is constructed using the line bundle [Formula: see text], where α is the addition map on A × A, and p1 is the projection of A × A to the first factor. In [I. Biswas, J. Hurtvbise and A. K. Raina, Rank one connections on abelian varieties, Internat. J. Math.22 (2011) 1529–1543], it was shown that these two torsors are isomorphic. The aim here is to produce a canonical isomorphism between them through an explicit construction.


Sign in / Sign up

Export Citation Format

Share Document