scholarly journals Quantum Field Theory over $\mathbb{F}_q$

10.37236/589 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Oliver Schnetz

We consider the number $\bar N(q)$ of points in the projective complement of graph hypersurfaces over $\mathbb{F}_q$ and show that the smallest graphs with non-polynomial $\bar N(q)$ have 14 edges. We give six examples which fall into two classes. One class has an exceptional prime 2 whereas in the other class $\bar N(q)$ depends on the number of cube roots of unity in $\mathbb{F}_q$. At graphs with 16 edges we find examples where $\bar N(q)$ is given by a polynomial in $q$ plus $q^2$ times the number of points in the projective complement of a singular K3 in $\mathbb{P}^3$. In the second part of the paper we show that applying momentum space Feynman-rules over $\mathbb{F}_q$ lets the perturbation series terminate for renormalizable and non-renormalizable bosonic quantum field theories.


1999 ◽  
Vol 08 (02) ◽  
pp. 125-163 ◽  
Author(s):  
Louis Crane ◽  
David Yetter

We show that any 3D topological quantum field theory satisfying physically reasonable factorizability conditions has associated to it in a natural way a Hopf algebra object in a suitable tensor category. We also show that all objects in the tensor category have the structure of left-left crossed bimodules over the Hopf algebra object. For 4D factorizable topological quantum filed theories, we provide by analogous methods a construction of a Hopf algebra category.



2021 ◽  
pp. 237-252
Author(s):  
J. Iliopoulos ◽  
T.N. Tomaras

We present a simple form of the Wightman axioms in a four-dimensional Minkowski space-time which are supposed to define a physically interesting interacting quantum field theory. Two important consequences follow from these axioms. The first is the invariance under CPT which implies, in particular, the equality of masses and lifetimes for particles and anti-particles. The second is the connection between spin and statistics. We give examples of interacting field theories and develop the perturbation expansion for Green functions. We derive the Feynman rules, both in configuration and in momentum space, for some simple interacting theories. The rules are unambiguous and allow, in principle, to compute any Green function at any order in perturbation.



2020 ◽  
pp. 575-621
Author(s):  
Giuseppe Mussardo

Chapter 16 covers the general properties of the integrable quantum field theories, including how an integrable quantum field theory is characterized by an infinite number of conserved charges. These theories are illustrated by means of significant examples, such as the Sine–Gordon model or the Toda field theories based on the simple roots of a Lie algebra. For the deformations of a conformal theory, it shown how to set up an efficient counting algorithm to prove the integrability of the corresponding model. The chapter focuses on two-dimensional models, and uses the term ‘two-dimensional’ to denote both a generic two-dimensional quantum field theory as well as its Euclidean version.



2021 ◽  
pp. 304-328
Author(s):  
J. Iliopoulos ◽  
T.N. Tomaras

Loop diagrams often yield ultraviolet divergent integrals. We introduce the concept of one-particle irreducible diagrams and develop the power counting argument which makes possible the classification of quantum field theories into non-renormalisable, renormalisable and super-renormalisable. We describe some regularisation schemes with particular emphasis on dimensional regularisation. The renormalisation programme is described at one loop order for φ‎4 and QED. We argue, without presenting the detailed proof, that the programme can be extended to any finite order in the perturbation expansion for every renormalisable (or super-renormalisable) quantum field theory. We derive the equation of the renormalisation group and explain how it can be used in order to study the asymptotic behaviour of Green functions. This makes it possible to introduce the concept of asymptotic freedom.



1992 ◽  
Vol 07 (04) ◽  
pp. 777-794
Author(s):  
C. P. MARTIN

We analyze whether the so-called method of stochastic analytic regularization is suitable as an intermediate step for constructing perturbative renormalized quantum field theories. We choose a λϕ3 in six dimensions to prove that this regularization method does not in general provide a quantum field theory. This result seems to apply to any field theory with a quadratically UV-divergent stochastic two-point function, for instance λϕ4 and gauge theories in four dimensions.



2008 ◽  
Vol 20 (08) ◽  
pp. 933-949
Author(s):  
C. A. LINHARES ◽  
A. P. C. MALBOUISSON ◽  
I. RODITI

Starting from the complete Mellin representation of Feynman amplitudes for noncommutative vulcanized scalar quantum field theory, introduced in a previous publication, we generalize to this theory the study of asymptotic behaviors under scaling of arbitrary subsets of external invariants of any Feynman amplitude. This is accomplished in both convergent and renormalized amplitudes.



2013 ◽  
Vol 28 (38) ◽  
pp. 1350178 ◽  
Author(s):  
YU NAKAYAMA

As an existence proof of the (0, 2) heterotic supercurrent supermultiplets in (1+1)-dimensional quantum field theories which are consistent with the warped superconformal algebra, we construct the (0, 2) chiral Liouville field theories. The two distinct possibilities of the heterotic supercurrent supermultiplets are both realized.



1994 ◽  
Vol 09 (01) ◽  
pp. 1-37 ◽  
Author(s):  
YU. P. GONCHAROV

This survey is devoted to possible manifestations of remarkable topological duality between real scalar and spinor fields (TDSS) existing on a great number of manifolds important in physical applications. The given manifestations are demonstrated to occur within the framework of miscellaneous branches in ordinary and supersymmetric quantum field theories, supergravity, Kaluza-Klein type theories, cosmology, strings, membranes and p-branes. All this allows one to draw the condusion that the above duality will seem to be an essential ingredient in many questions of present and future investigations.



2017 ◽  
Vol 3 (1) ◽  
Author(s):  
Thessa Fokkema ◽  
Kareljan Schoutens

The M_kk models for 1D lattice fermions are characterised by {\cal N}=2 supersymmetry and by an order-kk clustering property. This paper highlights connections with quantum field theories (QFTs) in various regimes. At criticality the QFTs are minimal models of {\cal N}=2 supersymmetric conformal field theory (CFT) - we analyse finite size spectra on open chains with a variety of supersymmetry preserving boundary conditions. Specific staggering perturbations lead to a gapped regime corresponding to massive {\cal N}=2 supersymmetric QFT with Chebyshev superpotentials. At ‘extreme staggering’ we uncover a simple physical picture with degenerate supersymmetric vacua and mobile kinks. We connect this kink-picture to the Chebyshev QFTs and use it to derive novel CFT character formulas. For clarity the focus in this paper is on the simplest models, M_11, M_22 and M_33.



2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Damiano Anselmi

Abstract We prove spectral optical identities in quantum field theories of physical particles (defined by the Feynman iϵ prescription) and purely virtual particles (defined by the fakeon prescription). The identities are derived by means of purely algebraic operations and hold for every (multi)threshold separately and for arbitrary frequencies. Their major significance is that they offer a deeper understanding on the problem of unitarity in quantum field theory. In particular, they apply to “skeleton” diagrams, before integrating on the space components of the loop momenta and the phase spaces. In turn, the skeleton diagrams obey a spectral optical theorem, which gives the usual optical theorem for amplitudes, once the integrals on the space components of the loop momenta and the phase spaces are restored. The fakeon prescription/projection is implemented by dropping the thresholds that involve fakeon frequencies. We give examples at one loop (bubble, triangle, box, pentagon and hexagon), two loops (triangle with “diagonal”, box with diagonal) and arbitrarily many loops. We also derive formulas for the loop integrals with fakeons and relate them to the known formulas for the loop integrals with physical particles.



Sign in / Sign up

Export Citation Format

Share Document