Monodromy Groups and Self-Invariance

2009 ◽  
Vol 61 (6) ◽  
pp. 1300-1324 ◽  
Author(s):  
Isabel Hubard ◽  
Alen Orbanić ◽  
Asia Ivić Weiss

Abstract For every polytope 𝒫 there is the universal regular polytope of the same rank as 𝒫 corresponding to the Coxeter group 𝒞 = [∞, … ,∞]. For a given automorphism d of 𝒞, using monodromy groups, we construct a combinatorial structure 𝒫d. When 𝒫d is a polytope isomorphic to 𝒫 we say that 𝒫 is self-invariant with respect to d, or d-invariant. We develop algebraic tools for investigating these operations on polytopes, and in particular give a criterion on the existence of a d-automorphismof a given order. As an application, we analyze properties of self-dual edge-transitive polyhedra and polyhedra with two flag-orbits. We investigate properties of medials of such polyhedra. Furthermore, we give an example of a self-dual equivelar polyhedron which contains no polarity (duality of order 2). We also extend the concept of Petrie dual to higher dimensions, and we show how it can be dealt with using self-invariance.

2002 ◽  
Vol 34 (01) ◽  
pp. 48-57
Author(s):  
Rahul Roy ◽  
Hideki Tanemura

We consider the Poisson Boolean model of percolation where the percolating shapes are convex regions. By an enhancement argument we strengthen a result of Jonasson (2000) to show that the critical intensity of percolation in two dimensions is minimized among the class of convex shapes of unit area when the percolating shapes are triangles, and, for any other shape, the critical intensity is strictly larger than this minimum value. We also obtain a partial generalization to higher dimensions. In particular, for three dimensions, the critical intensity of percolation is minimized among the class of regular polytopes of unit volume when the percolating shapes are tetrahedrons. Moreover, for any other regular polytope, the critical intensity is strictly larger than this minimum value.


2002 ◽  
Vol 34 (1) ◽  
pp. 48-57 ◽  
Author(s):  
Rahul Roy ◽  
Hideki Tanemura

We consider the Poisson Boolean model of percolation where the percolating shapes are convex regions. By an enhancement argument we strengthen a result of Jonasson (2000) to show that the critical intensity of percolation in two dimensions is minimized among the class of convex shapes of unit area when the percolating shapes are triangles, and, for any other shape, the critical intensity is strictly larger than this minimum value. We also obtain a partial generalization to higher dimensions. In particular, for three dimensions, the critical intensity of percolation is minimized among the class of regular polytopes of unit volume when the percolating shapes are tetrahedrons. Moreover, for any other regular polytope, the critical intensity is strictly larger than this minimum value.


Author(s):  
Bernhard M¨uhlherr ◽  
Holger P. Petersson ◽  
Richard M. Weiss

This chapter introduces the notion of a Tits index and the notion of the relative Coxeter diagram of a Tits index. It first defines a Tits index, which can be anisotropic or isotropic, quasi-split or split, before considering a number of propositions regarding compatible representations. It then gives a proof of the theorem that includes two assumptions about a Coxeter system, focusing on the absolute Coxeter system, the relative Coxeter system, and the relative Coxeter group of the Tits index, as well as the absolute Coxeter diagram (or absolute type), the relative Coxeter diagram (or relative type), and the absolute rank and the relative rank of the Tits index. The chapter concludes with some observations about the case that (W, S) is spherical, irreducible or affine.


Astérisque ◽  
2020 ◽  
Vol 416 ◽  
pp. 213-251
Author(s):  
Mikhail LYUBICH ◽  
Remus RADU ◽  
Raluca TANASE
Keyword(s):  

Astérisque ◽  
2020 ◽  
Vol 416 ◽  
pp. 213-251
Author(s):  
Mikhail LYUBICH ◽  
Remus RADU ◽  
Raluca TANASE
Keyword(s):  

2020 ◽  
Author(s):  
Deep Bhattacharjee

Gravity has been leaking in higher dimensions in the bulk. Gravity being a closed string is not attached or does not have any endpoints unlike photons to any Dirichlet (p)-Branes and therefore can travel inter-dimensional without any hindrance. In LHC, CERN, Gravitons are difficult to detect as they last for such a short span of time and in most of the cases invisible as because they can escape to higher spatial dimensions to the maximum of 10, as per 'M'-Theory. Gravity being one of the 4-Fundamental forces is weaker than all 3 (strong and weak nuclear force, electromagnetism) and therefore a famous problem has been made in particle physics called the 'hierarchy problem'. Through comprehensive analysis and research I have come to the conclusion that if dimension is 5 (or 4 if we neglect the temporal dimensions) then an old approach is there for the compactification of the dimensions as per Kaluza-Klein theory and the most important implications of this theory is that an unification of electromagnetism with gravitation occurs in the fifth dimensions, therefore we can conclude that both the charge (electric as well as magnetic and gravity) are dependent of each other in case of Dimensions greater than 4 (5 if time is added). Now, basic principles of electromagnetic theory states that the field-flux density through a closed surface like a T 2 Torus when integrated over the surface area leads to a zero flux. That means there is no flux outside this closed surface integral. However, if the surface is open then the field flux density is not zero and this preserves the concept of magnetic monopoles. However, in a paper in 1931,[1] Dirac approaches monopole theory of magnetism through a different perspectives that, if all the electrical charges of the universe is quantized[2] then there is a suitable (not yet proved though) existence of monopoles; however this are not well understood as of today's scenario. In condensed matter physics, plasma physics and magneto hydrodynamics, there are flux tubes and as the both ends of the flux tubes are independent of each other then the net flux through the cylinder is zero as the amount of field lines entering the tube on one side is equal to the amount of field lines exit from the other end. And in the sides of the cylinder or the flux tube there is no escape of field lines, hence, net flux is conserved. There also exists a type of 'Quasiparticles' that can act as a monopole.[3][4][5] Now, from the perspectives of the Guess law of electromagnetism, if there exists a magnetic monopole then the net charge or flux density over a surface is not zero rather the divergence of the flux density B is 4 [6]and an alternative approach of the 'monopole' can be achieved by increasing the spatial dimensions by a factor of 1 or more. The Gravity has no such poles and therefore can be considered as a unipolar flux density existing throughout the universe and is applicable to the inverse square law of decreasing magnitude via distance as 1/r 2. However, a magnet is always of bipolar with a north and South Pole. If a magnet can be broken then also the broken parts develop the other poles and become bipolar. However, there are tiny domains inside a magnet and if a magnet can be heated to approx. 700℃ then all the poles disappeared and if its cooled quickly, rather very quickly then the tiny domains inside the magnet would not get enough time to rearrange themselves and multipolar magnet is developed therefore to preserve the bipolar properties, the magnet should be cooled slowly allowing the time given to the tiny domains top rearrange themselves. Therefore, even multipole can be achieved quite easily but not the monopoles. So, the equation for a closed surface integral of a flux density without monopole is ∯(S) B dS = 0 or ∇ • B = 0 and that closed surface can be considered as 2 types namely (we will discuss about torus) as because in string theory compactification of higher spatial dimensions occurs in torus.


2018 ◽  
Vol 15 (1) ◽  
pp. 67-81 ◽  
Author(s):  
Chandan Raychaudhury ◽  
Md. Imbesat Hassan Rizvi ◽  
Debnath Pal

Background: Generating a large number of compounds using combinatorial methods increases the possibility of finding novel bioactive compounds. Although some combinatorial structure generation algorithms are available, any method for generating structures from activity-linked substructural topological information is not yet reported. Objective: To develop a method using graph-theoretical techniques for generating structures of antitubercular compounds combinatorially from activity-linked substructural topological information, predict activity and prioritize and screen potential drug candidates. </P><P> Methods: Activity related vertices are identified from datasets composed of both active and inactive or, differently active compounds and structures are generated combinatorially using the topological distance distribution associated with those vertices. Biological activities are predicted using topological distance based vertex indices and a rule based method. Generated structures are prioritized using a newly defined Molecular Priority Score (MPS). Results: Studies considering a series of Acid Alkyl Ester (AAE) compounds and three known antitubercular drugs show that active compounds can be generated from substructural information of other active compounds for all these classes of compounds. Activity predictions show high level of success rate and a number of highly active AAE compounds produced high MPS score indicating that MPS score may help prioritize and screen potential drug molecules. A possible relation of this work with scaffold hopping and inverse Quantitative Structure-Activity Relationship (iQSAR) problem has also been discussed. The proposed method seems to hold promise for discovering novel therapeutic candidates for combating Tuberculosis and may be useful for discovering novel drug molecules for the treatment of other diseases as well.


Author(s):  
S. G. Rajeev

Thenumerical solution of ordinary differential equations (ODEs)with boundary conditions is studied here. Functions are approximated by polynomials in a Chebychev basis. Sections then cover spectral discretization, sampling, interpolation, differentiation, integration, and the basic ODE. Following Trefethen et al., differential operators are approximated as rectangular matrices. Boundary conditions add additional rows that turn them into square matrices. These can then be diagonalized using standard linear algebra methods. After studying various simple model problems, this method is applied to the Orr–Sommerfeld equation, deriving results originally due to Orszag. The difficulties of pushing spectral methods to higher dimensions are outlined.


Sign in / Sign up

Export Citation Format

Share Document