An Algebraic Approach to Weakly Symmetric Finsler Spaces

2010 ◽  
Vol 62 (1) ◽  
pp. 52-73 ◽  
Author(s):  
Shaoqiang Deng

AbstractIn this paper, we introduce a new algebraic notion, weakly symmetric Lie algebras, to give an algebraic description of an interesting class of homogeneous Riemann-Finsler spaces, weakly symmetric Finsler spaces. Using this new definition, we are able to give a classification of weakly symmetric Finsler spaces with dimensions 2 and 3. Finally, we show that all the non-Riemannian reversible weakly symmetric Finsler spaces we find are non-Berwaldian and with vanishing S-curvature. Thismeans that reversible non-Berwaldian Finsler spaces with vanishing S-curvaturemay exist at large. Hence the generalized volume comparison theorems due to Z. Shen are valid for a rather large class of Finsler spaces.

1993 ◽  
Vol 03 (04) ◽  
pp. 447-489 ◽  
Author(s):  
THOMAS WILKE

An algebraic approach to the theory of regular languages of finite and infinite words (∞-languages) is presented. It extends the algebraic theory of regular languages of finite words, which is based on finite semigroups. Their role is taken over by a structure called right binoid. A variety theorem is proved: there is a one-to-one correspondence between varieties of ∞-languages and pseudovarieties of right binoids. The class of locally threshold testable languages and several natural subclasses (such as the class of locally testable languages) as well as classes of the Borel hierarchy over the Cantor space (restricted to regular languages) are investigated as examples for varieties of ∞-languages. The corresponding pseudovarieties of right binoids are characterized and in some cases defining equations are derived. The connections with the algebraic description and classification of regular languages of infinite words in terms of finite semigroups are pointed out.


2020 ◽  
pp. 1-17
Author(s):  
THOMAS BARTHELMÉ ◽  
SERGIO R. FENLEY ◽  
STEVEN FRANKEL ◽  
RAFAEL POTRIE

Abstract We show that if a partially hyperbolic diffeomorphism of a Seifert manifold induces a map in the base which has a pseudo-Anosov component then it cannot be dynamically coherent. This extends [C. Bonatti, A. Gogolev, A. Hammerlindl and R. Potrie. Anomalous partially hyperbolic diffeomorphisms III: Abundance and incoherence. Geom. Topol., to appear] to the whole isotopy class. We relate the techniques to the study of certain partially hyperbolic diffeomorphisms in hyperbolic 3-manifolds performed in [T. Barthelmé, S. Fenley, S. Frankel and R. Potrie. Partially hyperbolic diffeomorphisms homotopic to the identity in dimension 3, part I: The dynamically coherent case. Preprint, 2019, arXiv:1908.06227; Partially hyperbolic diffeomorphisms homotopic to the identity in dimension 3, part II: Branching foliations. Preprint, 2020, arXiv: 2008.04871]. The appendix reviews some consequences of the Nielsen–Thurston classification of surface homeomorphisms for the dynamics of lifts of such maps to the universal cover.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Giosuè Emanuele Muratore

Abstract The 2-Fano varieties, defined by De Jong and Starr, satisfy some higher-dimensional analogous properties of Fano varieties. We consider (weak) k-Fano varieties and conjecture the polyhedrality of the cone of pseudoeffective k-cycles for those varieties, in analogy with the case k = 1. Then we calculate some Betti numbers of a large class of k-Fano varieties to prove some special case of the conjecture. In particular, the conjecture is true for all 2-Fano varieties of index at least n − 2, and we complete the classification of weak 2-Fano varieties answering Questions 39 and 41 in [2].


2003 ◽  
Vol 18 (30) ◽  
pp. 5541-5612 ◽  
Author(s):  
F. ANSELMO ◽  
J. ELLIS ◽  
D. V. NANOPOULOS ◽  
G. VOLKOV

We present a universal normal algebra suitable for constructing and classifying Calabi–Yau spaces in arbitrary dimensions. This algebraic approach includes natural extensions of reflexive weight vectors to higher dimensions, related to Batyrev's reflexive polyhedra, and their n-ary combinations. It also includes a "dual" construction based on the Diophantine decomposition of invariant monomials, which provides explicit recurrence formulae for the numbers of Calabi–Yau spaces in arbitrary dimensions with Weierstrass, K3, etc., fibrations. Our approach also yields simple algebraic relations between chains of Calabi–Yau spaces in different dimensions, and concrete visualizations of their singularities related to Cartan–Lie algebras. This Universal Calabi–Yau algebra is a powerful tool for deciphering the Calabi–Yau genome in all dimensions.


2010 ◽  
Vol 60 (4) ◽  
pp. 570-573 ◽  
Author(s):  
Parastoo Habibi ◽  
Asadollah Razavi

2016 ◽  
Vol 110 ◽  
pp. 25-29 ◽  
Author(s):  
Hamid Darabi ◽  
Farshid Saeedi ◽  
Mehdi Eshrati
Keyword(s):  

Author(s):  
D. F. Holt ◽  
N. Spaltenstein

AbstractThe classification of the nilpotent orbits in the Lie algebra of a reductive algebraic group (over an algebraically closed field) is given in all the cases where it was not previously known (E7 and E8 in bad characteristic, F4 in characteristic 3). The paper exploits the tight relation with the corresponding situation over a finite field. A computer is used to study this case for suitable choices of the finite field.


2017 ◽  
Vol 190 (1) ◽  
pp. 23-51 ◽  
Author(s):  
Kenro Furutani ◽  
Irina Markina

2013 ◽  
Vol 65 (1) ◽  
pp. 66-81 ◽  
Author(s):  
Shaoqiang Deng ◽  
Zhiguang Hu

AbstractIn this paper we give an explicit formula for the flag curvature of homogeneous Randers spaces of Douglas type and apply this formula to obtain some interesting results. We first deduce an explicit formula for the flag curvature of an arbitrary left invariant Randersmetric on a two-step nilpotent Lie group. Then we obtain a classification of negatively curved homogeneous Randers spaces of Douglas type. This results, in particular, in many examples of homogeneous non-Riemannian Finsler spaces with negative flag curvature. Finally, we prove a rigidity result that a homogeneous Randers space of Berwald type whose flag curvature is everywhere nonzero must be Riemannian.


Sign in / Sign up

Export Citation Format

Share Document