scholarly journals Characterizations of Operator Birkhoff–James Orthogonality

2017 ◽  
Vol 60 (4) ◽  
pp. 816-829 ◽  
Author(s):  
Mohammad Sal Moslehian ◽  
Ali Zamani

AbstractIn this paper, we obtain some characterizations of the (strong) Birkhoff–James orthogonality for elements of Hilbert C*-modules and certain elements of . Moreover, we obtain a kind of Pythagorean relation for bounded linear operators. In addition, for we prove that if the norm attaining set is a unit sphere of some finite dimensional subspace of and , then for every , T is the strong Birkhoff–James orthogonal to S if and only if there exists a unit vector such that . Finally, we introduce a new type of approximate orthogonality and investigate this notion in the setting of inner product C*-modules.

Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 941 ◽  
Author(s):  
Milton Ferreira ◽  
Teerapong Suksumran

In this article, we prove an orthogonal decomposition theorem for real inner product gyrogroups, which unify some well-known gyrogroups in the literature: Einstein, Möbius, Proper Velocity, and Chen’s gyrogroups. This leads to the study of left (right) coset partition of a real inner product gyrogroup induced from a subgyrogroup that is a finite dimensional subspace. As a result, we obtain gyroprojectors onto the subgyrogroup and its orthogonal complement. We construct also quotient spaces and prove an associated isomorphism theorem. The left (right) cosets are characterized using gyrolines (cogyrolines) together with automorphisms of the subgyrogroup. With the algebraic structure of the decompositions, we study fiber bundles and sections inherited by the gyroprojectors. Finally, the general theory is exemplified for the aforementioned gyrogroups.


Author(s):  
Milton Ferreira ◽  
Teerapong Suksumran

In this article, we prove an orthogonal decomposition theorem for real inner product gyrogroups, which unify some well-known gyrogroups in the literature: Einstein, M\"{o}bius, Proper Velocity, and Chen's gyrogroups. This leads to the study of left (right) coset partition of a real inner product gyrogroup induced from a subgyrogroup that is a finite-dimensional subspace. As a result, we obtain gyroprojectors onto the subgyrogroup and its orthogonal complement. We construct also quotient spaces and prove an associated isomorphism theorem. The left (right) cosets are characterized using gyrolines (cogyrolines) together with automorphisms of the subgyrogroup. With the algebraic structure of the decompositions, we study fiber bundles and sections inherited by the gyroprojectors. Finally, the general theory is exemplified for the aforementioned gyrogroups.


Author(s):  
saied Johnny ◽  
Buthainah A. A. Ahmed

The aim of this paper is to study new results of an approximate orthogonality of Birkhoff-James techniques in real Banach space , namely Chiemelinski orthogonality (even there is no ambiguity between the concepts symbolized by orthogonality) and provide some new geometric characterizations which is considered as the basis of our main definitions. Also, we explore relation between two different types of orthogonalities. First of them orthogonality in a real Banach space and the other orthogonality in the space of bounded linear operator . We obtain a complete characterizations of these two orthogonalities in some types of Banach spaces such as strictly convex space, smooth space and reflexive space. The study is designed to give different results about the concept symmetry of Chmielinski-orthogonality for a compact linear operator on a reflexive, strictly convex Banach space having Kadets-Klee property by exploring a new type of a generalized some results with Birkhoff James orthogonality in the space of bounded linear operators. We also exhibit a smooth compact linear operator with a spectral value that is defined on a reflexive, strictly convex Banach space having Kadets-Klee property either having zero nullity or not -right-symmetric.


Author(s):  
Sebastian Kühnert

Conditional heteroskedastic financial time series are commonly modelled by ARCH and GARCH. ARCH(1) and GARCH processes were recently extended to the function spaces C[0,1] and L2[0,1], their probabilistic features were studied and their parameters were estimated. The projections of the operators on finite-dimensional subspace were estimated, as were the complete operators in GARCH(1,1). An explicit asymptotic upper bound of the estimation errors was stated in ARCH(1). This article provides sufficient conditions for the existence of strictly stationary solutions, weak dependence and finite moments of ARCH and GARCH processes in various Lp[0,1] spaces, C[0,1] and other spaces. In L2[0,1] we deduce explicit asymptotic upper bounds of the estimation errors for the shift term and the complete operators in ARCH and GARCH and for the projections of the operators on a finite-dimensional subspace in ARCH. The operator estimaton is based on Yule-Walker equations. The estimation of the GARCH operators also involves a result concerning the estimation of the operators in invertible, linear processes which is valid beyond the scope of ARCH and GARCH. Through minor modifications, all results in this article regarding functional ARCH and GARCH can be transferred to functional ARMA.


1986 ◽  
Vol 29 (1) ◽  
pp. 15-21 ◽  
Author(s):  
Lucas Jódar

The resolution problem of the systemwhere U(t), A, B, D and Uo are bounded linear operators on H and B* denotes the adjoint operator of B, arises in control theory, [9], transport theory, [12], and filtering problems, [3]. The finite-dimensional case has been introduced in [6,7], and several authors have studied the infinite-dimensional case, [4], [13], [18]. A recent paper, [17],studies the finite dimensional boundary problemwhere t ∈[0,b].In this paper we consider the more general boundary problemwhere all operators which appear in (1.2) are bounded linear operators on a separable Hilbert space H. Note that we do not suppose C = −B* and the boundary condition in (1.2) is more general than the boundary condition in (1.1).


2017 ◽  
Vol 103 (3) ◽  
pp. 402-419 ◽  
Author(s):  
WORACHEAD SOMMANEE ◽  
KRITSADA SANGKHANAN

Let$V$be a vector space and let$T(V)$denote the semigroup (under composition) of all linear transformations from$V$into$V$. For a fixed subspace$W$of$V$, let$T(V,W)$be the semigroup consisting of all linear transformations from$V$into$W$. In 2008, Sullivan [‘Semigroups of linear transformations with restricted range’,Bull. Aust. Math. Soc.77(3) (2008), 441–453] proved that$$\begin{eqnarray}\displaystyle Q=\{\unicode[STIX]{x1D6FC}\in T(V,W):V\unicode[STIX]{x1D6FC}\subseteq W\unicode[STIX]{x1D6FC}\} & & \displaystyle \nonumber\end{eqnarray}$$is the largest regular subsemigroup of$T(V,W)$and characterized Green’s relations on$T(V,W)$. In this paper, we determine all the maximal regular subsemigroups of$Q$when$W$is a finite-dimensional subspace of$V$over a finite field. Moreover, we compute the rank and idempotent rank of$Q$when$W$is an$n$-dimensional subspace of an$m$-dimensional vector space$V$over a finite field$F$.


2019 ◽  
Vol 7 (1) ◽  
pp. 67-77
Author(s):  
Shmuel Friedland

Abstract In this paper we give a simple sequence of necessary and sufficient finite dimensional conditions for a positive map between certain subspaces of bounded linear operators on separable Hilbert spaces to be completely positive. These criterions are natural generalization of Choi’s characterization for completely positive maps between pairs of linear operators on finite dimensional Hilbert spaces. We apply our conditions to a completely positive map between two trace class operators on separable Hilbert spaces. A completely positive map μ is called a quantum channel, if it is trace preserving, and μ is called a quantum subchannel if it decreases the trace of a positive operator.We give simple neccesary and sufficient condtions for μ to be a quantum subchannel.We show that μ is a quantum subchannel if and only if it hasHellwig-Kraus representation. The last result extends the classical results of Kraus and the recent result of Holevo for characterization of a quantum channel.


Author(s):  
Yousef Saleh

Given an arbitrary measure , this study shows that the set of norm attaining multilinear forms is not dense in the space of all continuous multilinear forms on . However, we have the density if and only if is purely atomic. Furthermore, the study presents an example of a Banach space in which the set of norm attaining operators from into is dense in the space of all bounded linear operators . In contrast, the set of norm attaining bilinear forms on is not dense in the space of continuous bilinear forms on .


Author(s):  
S.A. Ayupov ◽  
F.N. Arzikulov

The present paper is devoted to 2-local derivations. In 1997, P. Semrl introduced the notion of 2-local derivations and described 2-local derivations on the algebra B(H) of all bounded linear operators on the infinite-dimensional separable Hilbert space H. After this, a number of paper were devoted to 2-local maps on different types of rings, algebras, Banach algebras and Banach spaces. A similar description for the finite-dimensional case appeared later in the paper of S. O. Kim and J. S. Kim. Y. Lin and T. Wong described 2-local derivations on matrix algebras over a finite-dimensional division ring. Sh. A. Ayupov and K. K. Kudaybergenov suggested a new technique and have generalized the above mentioned results for arbitrary Hilbert spaces. Namely they considered 2-local derivations on the algebra B(H) of all linear bounded operators on an arbitrary Hilbert space H and proved that every 2-local derivation on B(H) is a derivation. Then there appeared several papers dealing with 2-local derivations on associative algebras. In the present paper 2-lo\-cal derivations on various algebras of infinite dimensional matrix-valued functions on a compactum are described. We develop an algebraic approach to investigation of derivations and \mbox{2-local} derivations on algebras of infinite dimensional matrix-valued functions on a compactum and prove that every such 2-local derivation is a derivation. As the main result of the paper it is established that every \mbox{2-local} derivation on a ∗-algebra C(Q,Mn(F)) or C(Q,Nn(F)), where Q is a compactum, Mn(F) is the ∗-algebra of infinite dimensional matrices over complex numbers (real numbers or quaternoins) defined in section 1, Nn(F) is the ∗-subalgebra of Mn(F) defined in section 2, is a derivation. Also we explain that the method developed in the paper can be applied to Jordan and Lie algebras of infinite dimensional matrix-valued functions on a compactum.


Sign in / Sign up

Export Citation Format

Share Document