Gene Expression Analysis In Gemcitabine Resistant Cells Derived From Human Pancreatic Cancer Cell

2011 ◽  
Vol 6 (12) ◽  
pp. 460-466
Author(s):  
Shaoxuan Zhang ◽  
Yarong Li ◽  
Tatsuhiko Furugawa ◽  
Homare Takahashi ◽  
Xiaofang Che ◽  
...  
1996 ◽  
Vol 270 (5) ◽  
pp. R1078-R1084 ◽  
Author(s):  
J. P. Smith ◽  
A. Shih ◽  
Y. Wu ◽  
P. J. McLaughlin ◽  
I. S. Zagon

The gastrointestinal peptides gastrin and cholecystokinin (CCK) stimulate growth of human pancreatic cancer through a CCK-B/gastrin- like receptor. In the present study we evaluated whether growth of human pancreatic cancer is endogenously regulated by gastrin. Immunohistomical examination of BxPC-3 cells and tumor xenografts revealed specifc gastrin immunoreactivity. Gastrin was detected by radioimmunoassay in pancreatic cancer cell extracts and in pancreatic cancer cell extracts and in the growth media. With use of reverse-transcriptase polymerase chain reaction gastrin gene expression was detected in both cultured BxPC-3 cancer cells and transplanted tumors, as well as seven addition human pancreatic cancer cell lines. Growth of BxPC-3 human pancreatic cancer cell in serum-free medium was inhibited by the addition of the CCK-B/gastrin receptor antagonist L-365,260, and gastrin treatment reversed the inhibitory effect of the antagonist. A selective gastrin antibody (Ab repressed growth of BxPC-3 cells. Gastrin immunoreactivity was detected in fresh human pancreatic cancer specimens but not in normal human pancreatic tissue. These data provide the first evidence that growth of a human pancreatic cancer is tonically stimulated by the autocrine production of gastrin. Evidence for the ubiquity of this system was provided by the detection of gastrin gene expression in multiple human pancreatic cancer cell lines and detection of gastrin in cell lines and fresh pancreatic tumors.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6560
Author(s):  
Katarzyna Ratajczak ◽  
Natalia Glatzel-Plucińska ◽  
Katarzyna Ratajczak-Wielgomas ◽  
Katarzyna Nowińska ◽  
Sylwia Borska

Pancreatic cancers are among of the most lethal types of neoplasms, and are mostly detected at an advanced stage. Conventional treatment methods such as chemotherapy or radiotherapy often do not bring the desired therapeutic effects. For this reason, natural compounds are increasingly being used as adjuvants in cancer therapy. Polyphenolic compounds, including resveratrol, are of particular interest. The aim of this study is to analyze the antiproliferative and pro-apoptotic mechanisms of resveratrol on human pancreatic cells. The study was carried out on three human pancreatic cancer cell lines: EPP85-181P, EPP85-181RNOV (mitoxantrone-resistant cells) and AsPC-1, as well as the normal pancreatic cell line H6c7. The cytotoxicity of resveratrol in the tested cell lines was assessed by the colorimetric method (MTT) and the flow cytometry method. Three selected concentrations of the compound (25, 50 and 100 µM) were tested in the experiments during a 48-h incubation. TUNEL and Comet assays, flow cytometry, immunocytochemistry, confocal microscopy, real-time PCR and Western Blot analyses were used to evaluate the pleiotropic effect of resveratrol. The results indicate that resveratrol is likely to be anticarcinogenic by inhibiting human pancreatic cancer cell proliferation. In addition, it affects the levels of Bcl-2 pro- and anti-apoptotic proteins. However, it should be emphasized that the activity of resveratrol was specific for each of the tested cell lines, and the most statistically significant changes were observed in the mitoxantrone-resistant cells.


Sign in / Sign up

Export Citation Format

Share Document