scholarly journals Erratum to : INFLUENCE OF SURFACE ENERGY BALANCE ON AIR TEMPERATURE CHANGE IN THE SURFACE BOUNDARY LAYER

1983 ◽  
Vol 56 (10) ◽  
pp. 732b-732b
2016 ◽  
Vol 17 (10) ◽  
pp. 2615-2630 ◽  
Author(s):  
A. L. Hirsch ◽  
A. J. Pitman ◽  
V. Haverd

Abstract This paper presents a methodology for examining land–atmosphere coupling in a regional climate model by examining how the resistances to moisture transfer from the land to the atmosphere control the surface turbulent energy fluxes. Perturbations were applied individually to the aerodynamic resistance from the soil surface to the displacement height, the aerodynamic resistance from the displacement height to the reference level, the stomatal resistance, and the leaf boundary layer resistance. Only perturbations to the aerodynamic resistance from the soil surface to the displacement height systematically affected 2-m air temperature for the shrub and evergreen boreal forest plant functional types (PFTs). This was associated with this resistance systematically increasing the terrestrial and atmospheric components of the land–atmosphere coupling strength through changes in the partitioning of the surface energy balance. Perturbing the other resistances did contribute to changing the partitioning of the surface energy balance but did not lead to systematic changes in the 2-m air temperature. The results suggest that land–atmosphere coupling in the modeling system presented here acts mostly through the aerodynamic resistance from the soil surface to the displacement height, which is a function of both the friction velocity and vegetation height and cover. The results show that a resistance pathway framework can be used to examine how changes in the resistances affect the partitioning of the surface energy balance and how this subsequently influences surface climate through land–atmosphere coupling. Limitations in the present analysis include grid-scale rather than PFT-scale analysis, the exclusion of resistance dependencies, and the linearity assumption of how temperature responds to a resistance perturbation.


Atmosphere ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 779 ◽  
Author(s):  
José Luis Flores-Rojas ◽  
Joan Cuxart ◽  
Manuel Piñas-Laura ◽  
Stephany Callañaupa ◽  
Luis Suárez-Salas ◽  
...  

The present study presents a detailed analysis of the diurnal and monthly cycles the surface boundary layer and of surface energy balance in a sparse natural vegetation canopy on Huancayo observatory (12.04 ∘ S, 75.32 ∘ W, 3313 m ASL), which is located in the central Andes of Perú (Mantaro Valley) during an entire year (May 2018–April 2019). We used a set of meteorological sensors (temperature, relative humidity, wind) installed in a gradient tower 30 m high, a set of radiative sensors to measure all irradiance components, and a set of tensiometers and heat flux plate to measure soil moisture, soil temperatures and soil heat flux. To estimate turbulent energy fluxes (sensible and latent), two flux–gradient methods: the aerodynamic method and the Bowen-ratio energy-balance method were used. The ground heat flux at surface was estimated using a molecular heat transfer equation. The results show minimum mean monthly temperatures and more stable conditions were observed in June and July before sunrise, while maximum mean monthly temperatures in October and November and more unstable conditions in February and March. From May to August inverted water vapor profiles near the surface were observed (more intense in July) at night hours, which indicate a transfer of water vapor as dewfall on the surface. The patterns of wind direction indicate well-defined mountain–valley circulation from south-east to south-west especially in fall–winter months (April–August). The maximum mean monthly sensible heat fluxes were found in June and September while minimum in February and March. Maximum mean monthly latent heat fluxes were found in February and March while minimum in June and July. The surface albedo and the Bowen ratio indicate semi-arid conditions in wet summer months and extreme arid conditions in dry winter months. The comparisons between sensible heat flux ( Q H ) and latent heat flux ( Q E ), estimated by the two methods show a good agreement (R 2 above 0.8). The comparison between available energy and the sum of Q E and Q H fluxes shows a good level of agreement (R 2 = 0.86) with important imbalance contributions after sunrise and around noon, probably by advection processes generated by heterogeneities on the surface around the Huancayo observatory and intensified by the mountain–valley circulation.


Sign in / Sign up

Export Citation Format

Share Document