scholarly journals Distinct roles for α-β hydrolase domain 5 (ABHD5/CGI-58) and adipose triglyceride lipase (ATGL/PNPLA2) in lipid metabolism and signaling

Adipocyte ◽  
2012 ◽  
Vol 1 (3) ◽  
pp. 123-131 ◽  
Author(s):  
Caleb C. Lord ◽  
J. Mark Brown
2016 ◽  
Vol 5 (7) ◽  
pp. 527-537 ◽  
Author(s):  
Claire Laurens ◽  
Pierre-Marie Badin ◽  
Katie Louche ◽  
Aline Mairal ◽  
Geneviève Tavernier ◽  
...  

2019 ◽  
Vol 44 (10) ◽  
pp. 1089-1098 ◽  
Author(s):  
Sulagna Mukherjee ◽  
Minji Choi ◽  
Jong Won Yun

The role of carboxylesterase 3 (Ces3) in the lipolysis of adipocytes has been overlooked, as 2 major lipolytic enzymes, hormone-sensitive lipase and adipose triglyceride lipase, play more powerful roles in lipolysis. In this study, we explored the effects of Ces3 in lipid metabolism by activating and inhibiting, as well as silencing, Ces3-encoding gene in 3T3-L1 cell model. Our results demonstrated that activation of Ces3 increased adipogenesis, and attenuated lipogenesis, whereas it promoted lipolysis and fatty acid oxidation. In addition, activated Ces3 led to enhanced expression of core fat browning marker genes and proteins, suggesting that Ces3 may play a pivotal role in fat browning and thermogenesis. In contrast, deficiency of Ces3 nullified the browning effect in white adipocytes, along with decreased adipogenesis in 3T3-L1 adipocytes. Interestingly, the expression pattern of adipose triglyceride lipase was in line with Ces3, whereas hormone-sensitive lipase was independently regulated irrespective of Ces3 expression levels, suggesting that Ces3 may play an important and compensatory role in the breakdown of triglycerides in white adipocytes. In conclusion, we provide the first evidence that activation of Ces3 contributes in the browning of white adipocytes, and maintains a balance in lipid metabolism, which could be a potential strategy in fighting against obesity.


2007 ◽  
Vol 293 (6) ◽  
pp. E1736-E1745 ◽  
Author(s):  
Erin E. Kershaw ◽  
Michael Schupp ◽  
Hong-Ping Guan ◽  
Noah P. Gardner ◽  
Mitchell A. Lazar ◽  
...  

Peroxisome proliferator-activated receptor-γ (PPARγ) regulates adipocyte genes involved in adipogenesis and lipid metabolism and is the molecular target for thiazolidinedione (TZD) antidiabetic agents. Adipose triglyceride lipase (ATGL) is a recently described triglyceride-specific lipase that is induced during adipogenesis and remains highly expressed in mature adipocytes. This study evaluates the ability of PPARγ to directly regulate ATGL expression in adipocytes in vitro and in vivo. In fully differentiated 3T3-L1 adipocytes, ATGL mRNA and protein are increased by TZD and non-TZD PPARγ agonists in a dose- and time-dependent manner. Rosiglitazone-mediated induction of ATGL mRNA is rapid and is not inhibited by the protein synthesis inhibitor cycloheximide, indicating that intervening protein synthesis is not required for this effect. Rosiglitazone-mediated induction of ATGL mRNA and protein is inhibited by the PPARγ-specific antagonist GW-9662 and is also significantly reduced following siRNA-mediated knockdown of PPARγ, supporting the direct transcriptional regulation of ATGL by PPARγ. In vivo, ATGL mRNA and protein are increased by rosiglitazone treatment in white and brown adipose tissue of mice with and without obesity due to high-fat diet or leptin deficiency. Thus, PPARγ positively regulates ATGL mRNA and protein expression in mature adipocytes in vitro and in adipose tissue in vivo, suggesting a role for ATGL in mediating PPARγ's effects on lipid metabolism.


Diabetes ◽  
2011 ◽  
Vol 60 (5) ◽  
pp. 1458-1466 ◽  
Author(s):  
M. L. Borg ◽  
Z. B. Andrews ◽  
E. J. Duh ◽  
R. Zechner ◽  
P. J. Meikle ◽  
...  

Gene ◽  
2015 ◽  
Vol 554 (1) ◽  
pp. 125-130 ◽  
Author(s):  
Jun Li ◽  
Jun Luo ◽  
Hui Wang ◽  
Hengbo Shi ◽  
Jiangjiang Zhu ◽  
...  

2008 ◽  
Vol 22 (5) ◽  
pp. 1200-1212 ◽  
Author(s):  
Matthew J. Watt ◽  
Bryce J. W. van Denderen ◽  
Laura A. Castelli ◽  
Clinton R. Bruce ◽  
Andrew J. Hoy ◽  
...  

2009 ◽  
Vol 284 (44) ◽  
pp. 30218-30229 ◽  
Author(s):  
Petra C. Kienesberger ◽  
Daeho Lee ◽  
Thomas Pulinilkunnil ◽  
Daniel S. Brenner ◽  
Lingzhi Cai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document