scholarly journals Evaluating the efficacy of a soil disinfection treatment for deep soil depth using dazomet combined with flooding against tomato bacterial wilt

2020 ◽  
Vol 62 (0) ◽  
pp. 79-84
Author(s):  
Yasunori Muramoto ◽  
Kazutomo Sakaguchi ◽  
Wataru Toriumi ◽  
Mitsuya Mino ◽  
Shigenobu Yoshida

2021 ◽  
Vol 63 (0) ◽  
pp. 103-107
Author(s):  
Taku Kawakami ◽  
Kaori Nakajima ◽  
Shigenobu Yoshida


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 173
Author(s):  
Huiling Guan ◽  
Jiangwen Fan ◽  
Haiyan Zhang ◽  
Warwick Harris

Soil erosion is prevalent in karst areas, but few studies have compared the differences in the drivers for soil microbial communities among karst ecosystems with different soil depths, and most studies have focused on the local scale. To fill this research gap, we investigated the upper 20 cm soil layers of 10 shallow–soil depth (shallow–SDC, total soil depth less than 100 cm) and 11 deep–soil depth communities (deep–SDC, total soil depth more than 100 cm), covering a broad range of vegetation types, soils, and climates. The microbial community characteristics of both the shallow–SDC and deep–SDC soils were tested by phospholipid fatty acid (PLFAs) analysis, and the key drivers of the microbial communities were illustrated by forward selection and variance partitioning analysis. Our findings demonstrated that more abundant soil nutrients supported higher fungal PLFA in shallow–SDC than in deep–SDC (p < 0.05). Furthermore, stronger correlation between the microbial community and the plant–soil system was found in shallow–SDC: the pure plant effect explained the 43.2% of variance in microbial biomass and 57.8% of the variance in the ratio of Gram–positive bacteria to Gram–negative bacteria (G+/G−), and the ratio of fungi to total bacteria (F/B); the pure soil effect accounted for 68.6% variance in the microbial diversity. The ratio of microbial PLFA cyclopropyl to precursors (Cy/Pr) and the ratio of saturated PLFA to monounsaturated PLFA (S/M) as indicators of microbial stress were controlled by pH, but high pH was not conducive to microorganisms in this area. Meanwhile, Cy/Pr in all communities was >0.1, indicating that microorganisms were under environmental stress. Therefore, the further ecological restoration of degraded karst communities is needed to improve their microbial communities.



2021 ◽  
Author(s):  
Xiaoyan Yu ◽  
Xue Zhang ◽  
Jing Zhang ◽  
Lida Zhang ◽  
Yanjie Jiao ◽  
...  


2017 ◽  
Vol 124 (5) ◽  
pp. 467-472 ◽  
Author(s):  
Kamal A. M. Abo-Elyousr ◽  
Mohamed E. A. Seleim ◽  
Rafeek M. El-Sharkawy ◽  
Hadel M. M. Khalil Bagy


Author(s):  
Narasimhamurthy Konappa ◽  
Soumya Krishnamurthy ◽  
Chandra Nayaka Siddaiah ◽  
Niranjana Siddapura Ramachandrappa ◽  
Srinivas Chowdappa


2021 ◽  
Vol 12 ◽  
Author(s):  
Khanh Duy Le ◽  
Jeun Kim ◽  
Hoa Thi Nguyen ◽  
Nan Hee Yu ◽  
Ae Ran Park ◽  
...  

Plant bacterial and fungal diseases cause significant agricultural losses and need to be controlled. Beneficial bacteria are promising candidates for controlling these diseases. In this study, Streptomyces sp. JCK-6131 exhibited broad-spectrum antagonistic activity against various phytopathogenic bacteria and fungi. In vitro assays showed that the fermentation filtrate of JCK-6131 inhibited the growth of bacteria and fungi with minimum concentration inhibitory (MIC) values of 0.31–10% and 0.31–1.25%, respectively. In the in vivo experiments, treatment with JCK-6131 effectively suppressed the development of apple fire blight, tomato bacterial wilt, and cucumber Fusarium wilt in a dose-dependent manner. RP-HPLC and ESI-MS/MS analyses indicated that JCK-6131 can produce several antimicrobial compounds, three of which were identified as streptothricin E acid, streptothricin D, and 12-carbamoyl streptothricin D. In addition, the disease control efficacy of the foliar application of JCK-6131 against tomato bacterial wilt was similar to that of the soil drench application, indicating that JCK-6131 could enhance defense resistance in plants. Molecular studies on tomato plants showed that JCK-6131 treatment induced the expression of the pathogenesis-related (PR) genes PR1, PR3, PR5, and PR12, suggesting the simultaneous activation of the salicylate (SA) and jasmonate (JA) signaling pathways. The transcription levels of PR genes increased earlier and were higher in treated plants than in untreated plants following Ralstonia solanacearum infection. These results indicate that Streptomyces sp. JCK-6131 can effectively control various plant bacterial and fungal diseases via two distinct mechanisms of antibiosis and induced resistance.



2010 ◽  
Vol 25 (2) ◽  
pp. 83-94 ◽  
Author(s):  
Marylene Bagarinao Posas ◽  
Koki Toyota


Author(s):  
E. S. Ivanova ◽  
◽  
I. S. Barashkova

The article presents the results of production experience on evaluating the effectiveness of chemical and biological protective measures against tomato bacterial wilt in protected soil. During the research, the influence of biological agents and pesticides on the diseased plants growth rate in greenhouses, the disease manifestation intensity, and crop yield was revealed.



Author(s):  
Bitang Bamazi ◽  
Agnassim Banito ◽  
K. D. Ayisah ◽  
Rachidatou Sikirou ◽  
Mathews Paret ◽  
...  

Tomato (Solanum lycopersicum L.) is one of the most important vegetables in Togo. Unfortunately, tomatoes are susceptible to many diseases, among which bacterial wilt caused by Ralstonia solanacearum causes major yield losses. In this study, incidence of bacterial wilt and its distribution was evaluated in the central region of Togo, the major tomato producing area in the country. Overall, 16 localities were surveyed in four prefectures. In each locality, three fields were visited, and the incidence of the disease was recorded, and diseased samples were collected for laboratory investigation. The results showed that bacterial wilt occurred in all the fields visited, indicating a field incidence of 100%, whereas the plant incidence ranged from 10.00±00% to 43.33±3.33%, with an average of 20.94±1.77%. The antibody based Immunostrip test was positive for R. solanacearum in 100% of the visited fields. From 144 samples collected from fields, 45 R. solanacearum isolates were isolated on Modified SMSA media. This survey results show that tomato bacterial wilt is a real threat to tomato production in the central region of Togo.



Sign in / Sign up

Export Citation Format

Share Document