Lignocellulosic biomass fractionation by a deep eutectic solvent and a chelator mediated fenton system

Author(s):  
L Orejuela Escobar
Biomass ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 29-59
Author(s):  
Enrico Scelsi ◽  
Antonella Angelini ◽  
Carlo Pastore

The growing demand for energy and materials in modern society pushes scientific research to finding new alternative sources to traditional fossil feedstocks. The exploitation of biomass promises to be among the viable alternatives with a lower environmental impact. Making biomass exploitation technologies applicable at an industrial level represents one of the main goals for our society. In this work, the most recent scientific studies concerning the enhancement of lignocellulosic biomasses through the use of deep eutectic solvent (DES) systems have been examined and reported. DESs have an excellent potential for the fractionation of lignocellulosic biomass: the high H-bond capacity and polarity allow the lignin to be deconvolved, making it easier to break down the lignocellulosic complex, producing a free crystallite of cellulose capable of being exploited and valorised. DESs offer valid alternatives of using the potential of lignin (producing aromatics), hemicellulose (achieving furfural) and cellulose (delivering freely degradable substrates through enzymatic transformation into glucose). In this review, the mechanism of DES in the fractionation of lignocellulosic biomass and the main possible uses for the valorisation of lignin, hemicellulose and cellulose were reported, with a critical discussion of the perspectives and limits for industrial application.


2013 ◽  
Vol 1 (1) ◽  
pp. 3 ◽  
Author(s):  
Andre M da Costa Lopes ◽  
Karen G João ◽  
Ana Rita C Morais ◽  
Ewa Bogel-Łukasik ◽  
Rafał Bogel-Łukasik

2018 ◽  
Vol 152 ◽  
pp. 01014 ◽  
Author(s):  
Yoon Li Wan ◽  
Yuen Jun Mun

Before the conversion of lignocellulosic biomass into fuel such as ethanol, the biomass needs to be pretreated and the yield of ethanol is highly dependent on the pretreatment efficiency. This study investigate the performance of deep eutectic solvent (DES) in pretreating sago waste which is a type of starchy biomass. The suitable type of DES in sago waste pretreatment was selected based on three criteria, which is the structural characteristic, the sugar yield during enzymatic hydrolysis and the amount of sugar loss during pretreatment. In this study, three types of DES namely Choline Chloride-Urea (ChCl-Urea), Choline Chloride-Citric acid (ChCl-CA) and Choline Chloride-Glycerol (ChCl-Glycerol) was investigated. The effect of temperature and duration on DES pretreatment was also investigated. All DES reagents were able to disrupt the structure and increase the porosity of sago waste during pretreatment. ChCl-Urea was selected in this study as it shows apparent structural disruption as examined under Scanning Electron Microscope (SEM). The highest glucose yield of 5.2 mg/mL was derived from enzymatic hydrolysis of ChCl-Urea pretreated sago waste. Moreover, reducing sugar loss during ChCl-Urea pretreatment was low, with only 0.8 mg/mL recorded. The most suitable temperature and duration for ChCl-Urea pretreatment is at 110°C and 3 hr. In a nutshell, the application of DES in pretreatment is feasible and other aspects such as the biodegradability and recyclability of DES is worth investigating to improve the economic feasibility of this pretreatment technique.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Guochao Xu ◽  
Hao Li ◽  
Wanru Xing ◽  
Lei Gong ◽  
Jinjun Dong ◽  
...  

Abstract Background Biobutanol is promising and renewable alternative to traditional fossil fuels and could be produced by Clostridium species from lignocellulosic biomass. However, biomass is recalcitrant to be hydrolyzed into fermentable sugars attributed to the densely packed structure by layers of lignin. Development of pretreatment reagents and processes for increasing surface area, removing hemicellulose and lignin, and enhancing the relative content of cellulose is currently an area of great interest. Deep eutectic solvents (DESs), a new class of green solvents, are effective in the pretreatment of lignocellulosic biomass. However, it remains challenging to achieve high titers of total sugars and usually requires combinatorial pretreatment with other reagents. In this study, we aim to develop novel DESs with high application potential in biomass pretreatment and high biocompatibility for biobutanol fermentation. Results Several DESs with betaine chloride and ethylamine chloride (EaCl) as hydrogen bond acceptors were synthesized. Among them, EaCl:LAC with lactic acid as hydrogen bond donor displayed the best performance in the pretreatment of corncob. Only by single pretreatment with EaCl:LAC, total sugars as high as 53.5 g L−1 could be reached. Consecutive batches for pretreatment of corncob were performed using gradiently decreased cellulase by 5 FPU g−1. At the end of the sixth batch, the concentration and specific yield of total sugars were 58.8 g L−1 and 706 g kg−1 pretreated corncob, saving a total of 50% cellulase. Utilizing hydrolysate as carbon source, butanol titer of 10.4 g L−1 was achieved with butanol yield of 137 g kg−1 pretreated corncob by Clostridium saccharobutylicum DSM13864. Conclusions Ethylamine and lactic acid-based deep eutectic solvent is promising in pretreatment of corncob with high total sugar concentrations and compatible for biobutanol fermentation. This study provides an efficient pretreatment reagent for facilely reducing recalcitrance of lignocellulosic materials and a promising process for biobutanol fermentation from renewable biomass.


2020 ◽  
Author(s):  
Guochao Xu ◽  
Hao Li ◽  
Wanru Xing ◽  
Lei Gong ◽  
Jinjun Dong ◽  
...  

Abstract Background: Biobutanol is promising and renewable alternative to traditional fossil fuels and could be produced by Clostridium species from lignocellulosic biomass. However, biomass is recalcitrant to be hydrolyzed into fermentable sugars attributed to the densely packed structure by layers of lignin. Development of pretreatment reagents and processes for increasing surface area, removing hemicellulose and lignin, and enhancing the relative content of cellulose is currently an area of great interest. Deep eutectic solvents (DESs), a new class of green solvents, are effective in the pretreatment of lignocellulosic biomass. However, it remains challenging to achieve high titers of total sugars and usually requires combinatorial pretreatment with other reagents. In this study, we aim to develop novel DESs with high application potential in biomass pretreatment and high biocompatibility for biobutanol fermentation.Results: Several DESs with betaine chloride and ethylamine chloride (EaCl) as hydrogen bond acceptors were synthesized. Among them, EaCl:LAC with lactic acid as hydrogen bond donor displayed the best performance in the pretreatment of corncob. Only by single pretreatment with EaCl:LAC, total sugars of as high as 53.5 g·L–1 could be reached. Consecutive batches for pretreatment of corncob were performed using gradiently decreased cellulase by 5 FPU·g–1. At the end of the sixth batch, the concentration and specific yield of total sugars were 58.8 g·L–1 and 706 g·kg–1 pretreated corncob, saving a total of 50% cellulase. Utilizing hydrolysate as carbon source, butanol titer of 10.4 g·L–1 was achieved with butanol yield of 137 g·kg–1 pretreated corncob by Clostridium saccharobutylicum DSM13864.Conclusions: Ethylamine and lactic acid based deep eutectic solvent is promising in pretreatment of corncob with high total sugar concentrations and compatible for biobutanol fermentation. This study provides an efficient pretreatment reagent for facilely reducing recalcitrance of lignocellulosic materials and a promising process for biobutanol fermentation from renewable biomass.


1985 ◽  
Vol 7 (3) ◽  
pp. 213-216 ◽  
Author(s):  
J. O. B. Carioca ◽  
P. V. Pannirselvam ◽  
E. A. Horta ◽  
H. L. Arora

2015 ◽  
Vol 6 (5) ◽  
pp. 781-790 ◽  
Author(s):  
K. G. Kalogiannis ◽  
S. Stefanidis ◽  
A. Marianou ◽  
C. Michailof ◽  
A. Kalogianni ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document