scholarly journals Prospective Role of β-Cell-Specific IGF-1 for Oxidative Stress in the Pathogenesis of Diabetic Neuropathy

2012 ◽  
Vol 01 (S5) ◽  
Author(s):  
Seigo Usuki
2021 ◽  
Vol 12 ◽  
Author(s):  
Jennifer S. Stancill ◽  
John A. Corbett

Oxidative stress is hypothesized to play a role in pancreatic β-cell damage, potentially contributing to β-cell dysfunction and death in both type 1 and type 2 diabetes. Oxidative stress arises when naturally occurring reactive oxygen species (ROS) are produced at levels that overwhelm the antioxidant capacity of the cell. ROS, including superoxide and hydrogen peroxide, are primarily produced by electron leak during mitochondrial oxidative metabolism. Additionally, peroxynitrite, an oxidant generated by the reaction of superoxide and nitric oxide, may also cause β-cell damage during autoimmune destruction of these cells. β-cells are thought to be susceptible to oxidative damage based on reports that they express low levels of antioxidant enzymes compared to other tissues. Furthermore, markers of oxidative damage are observed in islets from diabetic rodent models and human patients. However, recent studies have demonstrated high expression of various isoforms of peroxiredoxins, thioredoxin, and thioredoxin reductase in β-cells and have provided experimental evidence supporting a role for these enzymes in promoting β-cell function and survival in response to a variety of oxidative stressors. This mini-review will focus on the mechanism by which thioredoxins and peroxiredoxins detoxify ROS and on the protective roles of these enzymes in β-cells. Additionally, we speculate about the role of this antioxidant system in promoting insulin secretion.


2009 ◽  
Vol 46 (6) ◽  
pp. 783-790 ◽  
Author(s):  
Jianxiang Xu ◽  
Yun-Shi Long ◽  
David Gozal ◽  
Paul N. Epstein

2019 ◽  
Vol 20 (18) ◽  
pp. 4627 ◽  
Author(s):  
Raffaele Simeoli ◽  
Alessandra Fierabracci

Diabetic neuropathy is a serious complication of chronic hyperglycemia in diabetes patients. This complication can involve both peripheral sensorimotor and autonomic nervous system. The precise nature of injury to the peripheral nerves mediated by chronic hyperglycemia is unknown; however, several mechanisms have been proposed including polyol pathway activation, enhanced glycation of proteins and lipids, increased oxidative stress, and cytokine release in the site of injury. MicroRNAs (miRNAs) are small non-coding RNAs that mediate RNA interference by post-transcriptionally modulating gene expression and protein synthesis. Therefore, they have been implicated in several developmental, physiological, and pathophysiological processes where they modulate the expression of different proteins. Recently, miRNAs gained an increasing attention also for their role as diagnostic test in many diseases due to their stability in serum and their easy detection. Furthermore, recent studies suggest that miRNAs may be involved in diabetic neuropathy although their role in the onset and the development of this complication is not fully understood. In this review, we discuss the most recent literature providing evidence for miRNAs role in diabetic neuropathy opening new pathways to improve both early diagnosis and treatment of this complication.


2018 ◽  
Vol 315 (5) ◽  
pp. E912-E923 ◽  
Author(s):  
Marina Sokolova ◽  
Afaf Sahraoui ◽  
Merete Høyem ◽  
Jonas Øgaard ◽  
Egil Lien ◽  
...  

Inflammasomes are multiprotein inflammatory platforms that induce caspase-1 activation and subsequently interleukin (IL)-1β and IL-18 processing. The NLRP3 inflammasome is activated by different forms of oxidative stress, and, based on the central role of IL-1β in the destruction of pancreatic islets, it could be related to the development of diabetes. We therefore investigated responses in wild-type C57Bl/6 (WT) mice, NLRP3−/− mice, and mice deficient in apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC) after exposing islets to short-term hypoxia or alloxan-induced islet damage. NLRP3-deficient islets compared with WT islets had preserved function ex vivo and were protected against hypoxia-induced cell death. Furthermore, NLRP3 and ASC-deficient mice were protected against oxidative stress-induced diabetes caused by repetitive low-dose alloxan administration, and this was associated with reduced β-cell death and reduced macrophage infiltration. This suggests that the beneficial effect of NLRP3 inflammasome deficiency on oxidative stress-mediated β-cell damage could involve reduced macrophage infiltration and activation. To support the role of macrophage activation in alloxan-induced diabetes, we injected WT mice with liposomal clodronate, which causes macrophage depletion before induction of a diabetic phenotype by alloxan treatment, resulting in improved glucose homeostasis in WT mice. We show here that the NLRP3 inflammasome acts as a mediator of hypoxia and oxidative stress in insulin-producing cells, suggesting that inhibition of the NLRP3 inflammasome could have beneficial effects on β-cell preservation.


Sign in / Sign up

Export Citation Format

Share Document