scholarly journals Decrease in Aryl Hydrocarbon Receptor and 17β-Estradiol Receptor (A&B)Gene Expression in The Hypothalamus and The Pineal Gland, After Administration of Dimethylbenz (A) Anthracene, A Mammary Carcinogen, To Sprague-Dawley Female Rats.

2013 ◽  
Vol 05 (02) ◽  
Author(s):  
Thomas Cadoudal
2000 ◽  
Vol 347 (3) ◽  
pp. 787-795
Author(s):  
Damian BRAUZE ◽  
Danuta MALEJKA-GIGANTI

β-Naphthoflavone (β-NF) is a widely used inducer of phase-I and phase-II enzymes controlled by aryl hydrocarbon receptor (AhR). Studies of competitive binding with 3H-labelled 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 3-methylcholanthrene (3-MC) and benzo[a]pyrene (B[a]P) have shown that β-NF is a high-affinity ligand for AhR and also for polycyclic aromatic hydrocarbon (PAH)-binding protein, both soluble proteins of rat liver in 8 S and 4 S fractions, respectively, of sucrose gradients. This study examined binding of [3H]β-NF to liver cytosolic proteins of female Sprague-Dawley rats. Treatment of rats with β-NF, 3-MC, TCDD or α-naphthoflavone (α-NF) increased the specific [3H]β-NF binding to liver cytosol up to 125-fold that of vehicle (corn oil)-treated rats (< 100 fmol/mg of protein). Sucrose gradients revealed a large 4 S and a small 8 S peak of radioactivity from [3H]β-NF binding to cytosols of β-NF-, 3-MC-, TCDD- or α-NF-treated rats. Whereas co-incubation with the unlabelled β-NF eliminated both peaks, co-incubation with 2,3,7,8-tetrachlorodibenzofuran (TCDF) eliminated only the 8 S peak. The sucrose density gradient from [3H]TCDD binding to cytosol of β-NF- or TCDD-treated rats yielded a small 4 S and a larger 8 S peak; only the latter was abolished by co-incubation with TCDF. Thus, the patterns of sedimentation, distribution and elimination of radioactivity from the 8 S fraction of the liver cytosols from β-NF-, 3-MC-, TCDD- or α-NF-treated rats were characteristic for the AhR, whereas those from the 4 S fraction appeared specific for [3H]β-NF binding. The data indicate that potent AhR agonists, TCDD, 3-MC and β-NF, and to a lesser extent α-NF, a weak AhR agonist, induce a 4 S [3H]β-NF-binding protein in liver cytosol of female rats. α-NF, β-NF and 3-MC were effective competitors (80-85% inhibition) of the [3H]β-NF-specific binding to the β-NF-, 3 MC- or TCDD-induced 4 S protein, whereas several PAHs including B[a]P and benzo[e]pyrene were only weak competitors. The increased [3H]β-NF binding was not associated with glycine N-methyltransferase activity. Hence, the 4 S [3H]β-NF-binding protein described herein differs from the constitutive 4 S PAH-binding protein of rat liver cytosols in the inducibility by β-NF and 3-MC, ligand-binding characteristics, and lack of glycine N-methyltransferase activity. Gel filtration on Sephacryl of liver cytosols from β-NF-treated rats indicated a molecular mass of ≈ 42 kDa for [3H]β-NF-bound protein and suggested that it was derived from a large mass component that before the radioligand binding was eluted with the void volume of the gel and sedimented in a 7 S fraction of the sucrose gradient. The [3H]β-NF binding activity was not eluted with glutathione S-transferase Ya, aldehyde-3-dehydrogenase or DT-diaphorase [NAD(P)H: quinone oxidoreductase] activities, which are AhR-controlled and β-NF-inducible. Further studies are needed to determine the identity and function of this novel protein which may be involved either directly or indirectly (as a carrier protein) in xenobiotic metabolism in vivo.


2020 ◽  
Vol 21 (12) ◽  
pp. 4552 ◽  
Author(s):  
Chien-Ning Hsu ◽  
I-Chun Lin ◽  
Hong-Ren Yu ◽  
Li-Tung Huang ◽  
Mao-Meng Tiao ◽  
...  

Hypertension and chronic kidney disease (CKD) can originate during early-life. Tryptophan metabolites generated by different pathways have both detrimental and beneficial effects. In CKD, uremic toxins from the tryptophan-generating metabolites are endogenous ligands of the aryl hydrocarbon receptor (AHR). The interplay between AHR, nitric oxide (NO), the renin–angiotensin system (RAS), and gut microbiota is involved in the development of hypertension. We examined whether tryptophan supplementation in pregnancy can prevent hypertension and kidney disease programmed by maternal CKD in adult offspring via the aforementioned mechanisms. Sprague–Dawley (SD) female rats received regular chow or chow supplemented with 0.5% adenine for 3 weeks to induce CKD before pregnancy. Pregnant controls or CKD rats received vehicle or tryptophan 200 mg/kg per day via oral gavage during pregnancy. Male offspring were divided into four groups (n = 8/group): control, CKD, tryptophan supplementation (Trp), and CKD plus tryptophan supplementation (CKDTrp). All rats were sacrificed at the age of 12 weeks. We found maternal CKD induced hypertension in adult offspring, which tryptophan supplementation prevented. Maternal CKD-induced hypertension is related to impaired NO bioavailability and non-classical RAS axis. Maternal CKD and tryptophan supplementation differentially shaped distinct gut microbiota profile in adult offspring. The protective effect of tryptophan supplementation against maternal CKD-induced programmed hypertension is relevant to alterations to several tryptophan-metabolizing microbes and AHR signaling pathway. Our findings support interplay among tryptophan-metabolizing microbiome, AHR, NO, and the RAS in hypertension of developmental origins. Furthermore, tryptophan supplementation in pregnancy could be a potential approach to prevent hypertension programmed by maternal CKD.


2001 ◽  
Vol 91 (4) ◽  
pp. 1828-1835 ◽  
Author(s):  
Nicole Stupka ◽  
Peter M. Tiidus

The effects of estrogen and ovariectomy on indexes of muscle damage after 2 h of complete hindlimb ischemia and 2 h of reperfusion were investigated in female Sprague-Dawley rats. The rats were assigned to one of three experimental groups: ovariectomized with a 17β-estradiol pellet implant (OE), ovariectomized with a placebo pellet implant (OP), or control with intact ovaries (R). It was hypothesized that following ischemia-reperfusion (I/R), muscle damage indexes [serum creatine kinase (CK) activity, calpain-like activity, inflammatory cell infiltration, and markers of lipid peroxidation (thiobarbituric-reactive substances)] would be lower in the OE and R rats compared with the OP rats due to the protective effects of estrogen. Serum CK activity following I/R was greater ( P < 0.01) in the R rats vs. OP rats and similar in the OP and OE rats. Calpain-like activity was greatest in the R rats ( P < 0.01) and similar in the OP and OE rats. Neutrophil infiltration was assessed using the myeloperoxidase (MPO) assay and immunohistochemical staining for CD43-positive (CD43+) cells. MPO activity was lower ( P < 0.05) in the OE rats compared with any other group and similar in the OP and R rats. The number of CD43+ cells was greater ( P < 0.01) in the OP rats compared with the OE and R rats and similar in the OE and R rats. The OE rats had lower ( P < 0.05) thiobarbituric-reactive substance content following I/R compared with the R and OP rats. Indexes of muscle damage were consistently attenuated in the OE rats but not in the R rats. A 10-fold difference in serum estrogen content may mediate this. Surprisingly, serum CK activity and muscle calpain-like activity were lower ( P< 0.05) in the OP rats compared with the R rats. Increases in serum insulin-like growth factor-1 content ( P < 0.05) due to ovariectomy were hypothesized to account for this finding. Thus both ovariectomy and estrogen supplementation have differential effects on indexes of I/R muscle damage.


2008 ◽  
Vol 104 (5) ◽  
pp. 1415-1429 ◽  
Author(s):  
Chun-Hua Lin ◽  
Shu-Hui Juan ◽  
Chen Yu Wang ◽  
Yu-Yo Sun ◽  
Chih-Ming Chou ◽  
...  

2021 ◽  
Author(s):  
Arnav Gupta ◽  
Sarah K. Sasse ◽  
Lynn Sanford ◽  
Margaret A. Gruca ◽  
Robin D. Dowell ◽  
...  

AbstractTranscriptional responses to wildfire smoke, an increasingly important cause of human morbidity, are poorly understood. Here, using a combination of precision nuclear run-on sequencing (PRO-seq) and the assay for transposase-accessible chromatin using sequencing (ATAC-seq), we identify rapid and dynamic changes in transcription and chromatin structure in Beas-2B airway epithelial cells after exposure to wood smoke particles (WSP). By comparing 30 and 120 minutes of WSP exposure, we defined three distinct temporal patterns of transcriptional induction and chromatin responses to WSP. Whereas transcription of canonical targets of the aryl hydrocarbon receptor (AHR), such as CYP1A1 and AHRR, was robustly increased after 30 minutes of WSP exposure, transcription of these genes and associated enhancers returned to near baseline at 120 minutes. ChIP-qPCR assays and AHR knockdown confirmed a role for AHR in regulating these transcriptional responses, and we applied bioinformatics approaches to identify novel AHR-regulated pathways and targets including the DNA methyltransferase, DNMT3L, and its interacting factor, SPOCD1. Our analysis also defined a role for NFkB as a primary transcriptional effector of WSP-induced changes in gene expression. The kinetics of AHR- and NFkB-regulated responses to WSP were distinguishable based on the timing of both transcriptional responses and chromatin remodeling, with induction of several cytokines implicated in maintaining the NFkB response. In aggregate, our data establish a direct and primary role for AHR in mediating airway epithelial responses to WSP and identify crosstalk between AHR and NFkB signaling in controlling pro-inflammatory gene expression.


Sign in / Sign up

Export Citation Format

Share Document