scholarly journals Assessment of the Genetic Diversity, Breeds Structure and Genetic Relationships in Four Egyptian Camel Breeds using Microsatellite and Start Codon Targeted (SCoT) Markers

Author(s):  
Al Sayed Al Soudy
2015 ◽  
Vol 15 (1) ◽  
pp. 64-71 ◽  
Author(s):  
Khaled Mirzaei ◽  
Ghader Mirzaghaderi

The genetic diversity of 39 Iranian black cumin (Nigella sativa L.) landraces was analysed using 14 polymorphic Start Codon Targeted (SCoT) markers. A total of 106 bands ranging from 3 (for SCoT70) to 13 (for SCoT23) were observed. Of them, 33 (31%) bands were polymorphic with a mean of 1.65 bands per primer. Polymorphism information content (PIC) per primer ranged from 0.035 (for SCoT12) to 0.133 (for SCoT70), with an average of 0.078. Besides PIC, Simpson's diversity (D) index was also calculated for each SCoT marker as an indication of discrimination power across population. The D index was used to adjust the PIC of the SCoT markers. As the adjusted PIC (PICD= PIC × D) was calculated based on both the PIC and the rate of band dispersion, this reflected the informativeness of a dominant marker more precisely than PIC. Genetic relationships were estimated using Jaccard's similarity coefficient-generated values between different pairs of genotypes that varied from 80 to 97% with an average of 88%. These coefficients were applied to construct a dendrogram using the UPGMA algorithm. A high genetic similarity was observed that might be due to the fact that N. sativa is a self-pollinated plant not originated from Iran and might have been imported from the Mediterranean regions.


Author(s):  
Atefeh Sadat Mostafavi ◽  
Mansour Omidi ◽  
Reza Azizinezhad ◽  
Alireza Etminan ◽  
Hassanali Naghdi Badi

Abstract Background Rosa damascena Mill is a well-known species of the rose family. It is famous for its essential oil content. The aim of the present study was to assess the genetic diversity and population structure of a mini core collection of the Iranian Damask rose germplasm. This involved the use of universal rice primers (URP) and start codon targeted (SCoT) molecular markers. Results Fourteen URP and twelve SCoT primers amplified 268 and 216 loci, with an average of 19.21 and 18.18 polymorphic fragments per primer, respectively. The polymorphic information content for URR and SCoT primers ranged from 0.38 to 0.48 and 0.11 to 0.45, with the resolving power ranging from 8.75 to 13.05 and 9.9 to 14.59, respectively. Clustering was based on neighbor-joining (NJ). The mini core collection contained 40 accessions and was divided into three distinct clusters, centered on both markers and on the combination of data. Conclusion Cluster analysis and principal coordinate analysis were consistent with genetic relationships derived by STRUCTURE analysis. The findings showed that patterns of grouping did not correlate with geographical origin. Both molecular markers demonstrated that the accessions were not genetically diverse as expected, thereby highlighting the possibility that gene flow occurred between populations.


Author(s):  
Ghazal Ghobadi ◽  
Alireza Etminan ◽  
Ali Mehras Mehrabi ◽  
Lia Shooshtari

Abstract Background Evaluation of genetic diversity and relationships among crop wild relatives is an important task in crop improvement. The main objective of the current study was to estimate molecular variability within the set of 91 samples from Triticum aestivum, Aegilops cylindrica, and Aegilops crassa species using 30 CAAT box–derived polymorphism (CBDP) and start codon targeted (SCoT) markers. Results Fifteen SCoT and Fifteen CBDP primers produced 262 and 298 fragments which all of them were polymorphic, respectively. The number of polymorphic bands (NPB), polymorphic information content (PIC), resolving power (Rp), and marker index (MI) for SCoT primers ranged from 14 to 23, 0.31 to 0.39, 2.55 to 7.49, and 7.56 to 14.46 with an average of 17.47, 0.34, 10.44, and 5.69, respectively, whereas these values for CBDP primers were 15 to 26, 0.28 to 0.36, 3.82 to 6.94, and 4.74 to 7.96 with a mean of 19.87, 0.31, 5.35, and 6.24, respectively. Based on both marker systems, analysis of molecular variance (AMOVA) indicated that the portion of genetic diversity within species was more than among them. In both analyses, the highest values of the number of observed (Na) and effective alleles (Ne), Nei’s gene diversity (He), and Shannon’s information index (I) were estimated for Ae. cylindrica species. Conclusion The results of cluster analysis and population structure showed that SCoT and CBDP markers grouped all samples based on their genomic constitutions. In conclusion, the used markers are very effective techniques for the evaluation of the genetic diversity in wild relatives of wheat.


2003 ◽  
Vol 54 (5) ◽  
pp. 429 ◽  
Author(s):  
J. S. Croser ◽  
F. Ahmad ◽  
H. J. Clarke ◽  
K. H. M. Siddique

Efforts to improve the yield and quality of cultivated chickpea (Cicer arietinum L.) are constrained by a low level of intraspecific genetic diversity. Increased genetic diversity can be achieved via the hybridisation of the cultivated species with the unimproved 'wild' relatives from within the 43 species of the Cicer genus. To date, the 8 species sharing an annual growth habit and chromosome number with C. arietinum have been the primary focus of screening and introgression efforts. Screening of these species has uncovered morphological characteristics and resistance to a number of abiotic and biotic stresses that are of potential value to chickpea improvement programs. Detailed analysis of protein and DNA, karyotyping, and crossability studies have begun to elucidate the relationships between the annual Cicer species. In comparison, perennial species have received little attention due to difficulties in collection, propagation, and evaluation. This review discusses the progress towards an understanding of genetic relationships between the Cicer species, and the introgression of genes from the wild Cicer species into the cultivated species.


Weed Science ◽  
2007 ◽  
Vol 55 (2) ◽  
pp. 95-101 ◽  
Author(s):  
Runzhi Li ◽  
Shiwen Wang ◽  
Liusheng Duan ◽  
Zhaohu Li ◽  
Michael J. Christoffers ◽  
...  

Weed genetic diversity is important for understanding the ability of weeds to adapt to different environments and the impact of herbicide selection on weed populations. Genetic diversity within and among six wild oat populations in China varying in herbicide selection pressure and one population in North Dakota were surveyed using 64 polymorphic alleles resulting from 25 microsatellite loci. Mean Nei's gene diversity (h) for six wild oat populations from China was between 0.17 and 0.21, and total diversity (HT) was 0.23. A greater proportion of this diversity, however, was within (Hs= 0.19) rather than among (Gst= 0.15) populations. For the wild oat population from the United States,h= 0.24 andHT= 0.24 were comparable to the values for the six populations from China. Cluster analysis divided the seven populations into two groups, where one group was the United States population and the other group included the six Chinese populations. The genetic relationships among six populations from China were weakly correlated with their geographic distribution (r= 0.22) using the Mantel test. Minimal difference in gene diversity and small genetic distance (Nei's distance 0.07 or less) among six populations from China are consistent with wide dispersal of wild oat in the 1980s. Our results indicate that the wild oat populations in China are genetically diverse at a level similar to North America, and the genetic diversity of wild oat in the broad spatial scale is not substantially changed by environment, agronomic practices, or herbicide usage.


2011 ◽  
Vol 46 (9) ◽  
pp. 1035-1044 ◽  
Author(s):  
Patrícia Coelho de Souza Leão ◽  
Sérgio Yoshimitsu Motoike

The objective of this work was to analyze the genetic diversity of 47 table grape accessions, from the grapevine germplasm bank of Embrapa Semiárido, using 20 RAPD and seven microsatellite markers. Genetic distances between pairs of accessions were obtained based on Jaccard's similarity index for RAPD data and on the arithmetic complement of the weighted index for microsatellite data. The groups were formed according to the Tocher's cluster analysis and to the unweighted pair‑group method with arithmetic mean (UPGMA). The microsatellite markers were more efficient than the RAPD ones in the identification of genetic relationships. Information on the genetic distance, based on molecular characteristics and coupled with the cultivar agronomic performance, allowed for the recommendation of parents for crossings, in order to obtain superior hybrids in segregating populations for the table grape breeding program of Embrapa Semiárido.


2016 ◽  
Vol 44 (2) ◽  
pp. 431-436 ◽  
Author(s):  
Masoumeh YOUSEFIAZARKHANIAN ◽  
Ali ASGHARI ◽  
Jafar AHMADI ◽  
Behvar ASGHARI ◽  
Ali Ashraf JAFARI

The genus Salvia includes an enormous assemblage of nearly 1,000 species dispersed around the world. Due to possible threats to this genus, there is an immediate requirement to evaluate the diversity of its wild populations. ISSR and RAPD molecular techniques were used to evaluate the genetic relationships among twenty-one ecotypes of eight Salvia species. Amplification of genomic DNA using 23 primers (15 RAPD and eight ISSR) produced 280 bands, of which 91% were polymorphic. The results of marker parameters showed no clear difference between two marker systems. It was generally observed that both ISSR and RAPD markers had similar efficiency in detecting genetic polymorphisms with remarkable ability to differentiate the closely related ecotypes of Salvia. Nei’s similarity coefficients for these techniques ranged from 0.48 to 0.98. Based on the results of clustering, PCoA and AMOVA, the genetic diversity between and within species was confirmed. So, conservation and domestication of the genus Salvia must be due to levels of genetic variations.


2020 ◽  
Vol 24 (5) ◽  
pp. 474-480
Author(s):  
I. I. Suprun ◽  
S. A. Plugatar ◽  
I. V. Stepanov ◽  
T. S. Naumenko

In connection with the development of breeding and the creation of new plant varieties, the problem of their genotyping and identification is becoming increasingly important, therefore the use of molecular methods to identify genetic originality and assess plant genetic diversity appears to be relevant. As part of the work performed, informative ISSR and IRAP DNA markers promising for the study of genetic diversity of the Rosa L. genus were sought and applied to analysis of genetic relationships among 26 accessions of the genus Rosa L. from the gene pool collection of Nikita Botanical Gardens. They included 18 cultivated varieties and 8 accessions of wild species. The species sample included representatives of two subgenera, Rosa and Platyrhodon. The subgenus Platyrhodon was represented by one accession of the species R. roxburghii Tratt. Cultivated roses were represented by varieties of garden groups hybrid tea, floribunda, and grandiflora. The tested markers included 32 ISSRs and 13 IRAPs. Five ISSR markers (UBC 824, ASSR29, 3A21, UBC 864, and UBC 843) and three IRAPs (TDK 2R, Сass1, and Сass2) were chosen as the most promising. They were used for genotyping the studied sample of genotypes. In general, they appeared to be suitable for further use in studying the genetic diversity of the genus Rosa L. The numbers of polymorphic fragments ranged from 12 to 31, averaging 19.25 fragments per marker. For markers UBC 864 and UBC 843, unique fingerprints were identified in each accession studied. The genetic relationships of the studied species and varieties of roses analyzed by the UPGMA, PCoA, and Bayesian methods performed on the basis of IRAP and ISSR genotyping are consistent with their taxonomic positions. The genotype of the species R. roxburghii of the subgenus Platyrhodon was determined genetically as the most distant. According to clustering methods, the representative of the species R. bengalensis did not stand out from the group of cultivated varieties. When assessing the level of genetic similarity among the cultivated varieties of garden roses, the most genetically isolated varieties were ‘Flamingo’, ‘Queen Elizabeth’, and ‘Kordes Sondermeldung’; for most of the other varieties, groups of the greatest genetic similarity were identified. This assessment reflects general trends in phylogenetic relationships, both among the studied species of the genus and among cultivated varieties.


2020 ◽  
Author(s):  
Cesar Fortes-Lima ◽  
Paul Verdu

Abstract During the Trans-Atlantic Slave Trade (TAST), around twelve million Africans were enslaved and forcibly moved from Africa to the Americas and Europe, durably influencing the genetic and cultural landscape of a large part of humanity since the 15th century. Following historians, archaeologists, and anthropologists, population geneticists have, since the 1950’s mainly, extensively investigated the genetic diversity of populations on both sides of the Atlantic. These studies shed new lights into the largely unknown genetic origins of numerous enslaved-African descendant communities in the Americas, by inferring their genetic relationships with extant African, European, and Native American populations. Furthermore, exploring genome-wide data with novel statistical and bioinformatics methods, population geneticists have been increasingly able to infer the last 500 years of admixture histories of these populations. These inferences have highlighted the diversity of histories experienced by enslaved-African descendants, and the complex influences of socio-economic, political, and historical contexts on human genetic diversity patterns during and after the slave trade. Finally, the recent advances of paleogenomics unveiled crucial aspects of the life and health of the first generation of enslaved Africans in the Americas. Altogether, human population genetics approaches in the genomic and paleogenomic era need to be coupled with history, archaeology, anthropology, and demography in interdisciplinary research, to reconstruct the multifaceted and largely unknown history of the TAST and its influence on human biological and cultural diversities today. Here, we review anthropological genomics studies published over the past 15 years and focusing on the history of enslaved-African descendant populations in the Americas.


2020 ◽  
Author(s):  
Yusen Shen ◽  
Jiansheng Wang ◽  
Huifang Yu ◽  
Xiaoguang Sheng ◽  
Zhenqing Zhao ◽  
...  

Abstract Background: Broccoli (Brassica oleracea var. italica) is a vegetable widely cultivated in China. Many new-type broccoli cultivars were bred and developed by Chinese breeders during the recent three decades. However, the broccoli cultivar nomenclature and detailed information of genetic relationships among broccoli germplasms are unclear. Results: The present study identified millions of SNPs by next-generation sequencing of 23 representative broccoli lines. Through several steps of selection, 100 SNPs were successfully converted into KASP markers, and used to evaluate the genetic diversity, genetic relationship, and population structure of 392 broccoli accessions, which represent the mainly broccoli breeding materials in China. The initial, introduced and improved accessions were well clustered, though some accessions were overlapped between groups, probably reflecting the fact that breeding activities led to genetic similarities. To make the KASP genotyping more efficient and cost-effective, 25 of the 100 KASPs were selected for fingerprinting of all accessions, and the 2D barcode contained fingerprinting information were generated for elite varieties. Conclusion: The KASP markers developed in this study provided an efficient way for germplasm characterization, DNA fingerprinting, seed purity identification, and marker-assisted selection of broccoli in China.


Sign in / Sign up

Export Citation Format

Share Document