scholarly journals Evaluation of AISC 360-16 and Eurocode 4 Compressive Strength Equations for Concrete-Filled Steel Tube Columns

2020 ◽  
Vol 24 (1) ◽  
pp. 89-104
Author(s):  
Voraphol Horsangchai ◽  
Akhrawat Lenwari
2011 ◽  
Vol 368-373 ◽  
pp. 410-414 ◽  
Author(s):  
Hong Zhen Kang ◽  
Lei Yao ◽  
Xi Min Song ◽  
Ying Hua Ye

To study axial compressive strength of high strength concrete-filled steel tube composite columns, tests of 18 specimens were carried out. Parameters of the specimens were the confinement index of concrete-filled steel tube, the cubic strength and the stirrup characteristic value of concrete outer of steel tube. Test results show that the concrete-filled steel tube and the reinforced concrete deformed simultaneously in the axial direction before and at the peak value of axial compressive force; after failure of the reinforced concrete, the concrete-filled steel tube can still bear the axial load and deformation; the main influential factors of axial compressive capacity are confinement index, the cubic strength and the stirrup characteristic value of concrete outer of steel tube. The accuracy of the formula of axial compressive strength of composite columns provided by CECS 188:2005 is proved by the test results of this paper.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Muhammad Aun Bashir

Concrete filled steel tube structures are becoming very popular in the modern civil engineering projects. Studying composite structures is useful, since it is an innovative and contemporary way to build structures. This type of structure has the ability to use respective strength of both steel and concrete due to confinement. Prefabrication of steel tube section is beneficial, and allows rapid installation into main structure. It also reduces the assembly cost and construction time. This paper will present the simple equation to predict the compressive strength of square concrete filled steel tube by using Finite Element Analysis (FEA)based software ABAQUs. In this study, 3D non-linear finite element models of short square composite columns were prepared using ABAQUS. The results were compared with published experimental tests of a concrete filled steel tube short columns. After getting the good agreement with the experimental results, a simple equation for the prediction of compressive strength is presented by considering the width to thickness ratio of steel tube. Results are validated with experimental results. The equation can predict the compressive strength only for the given material strengths and in future, the simple equation can be improved by considering different parameters e.g. material strength, slenderness ratio and end conditions.


Sign in / Sign up

Export Citation Format

Share Document