Dynamic Higher Order Functionally Graded Micropolar Plate Equations

Author(s):  
H. Abadikhah ◽  
P.D. Folkow
2014 ◽  
Vol 1015 ◽  
pp. 97-100
Author(s):  
Yao Dai ◽  
Xiao Chong ◽  
Ying Chen

The higher order crack-tip fields for an anti-plane crack situated in the interface between functionally graded piezoelectric materials (FGPMs) and homogeneous piezoelectric materials (HPMs) are presented. The mechanical and electrical properties of the FGPMs are assumed to be linear functions of y perpendicular to the crack. The crack surfaces are supposed to be insulated electrically. By using the method of eigen-expansion, the higher order stress and electric displacement crack tip fields for FGPMs and HPMs are obtained. The analytic expressions of the stress intensity factors and the electric displacement intensity factors are derived.


2013 ◽  
Vol 278-280 ◽  
pp. 491-494
Author(s):  
Yao Dai ◽  
Xiao Chong

The Reissner’s plate bending theory with consideration of transverse shear deformation effects is adopted to study the fundamental fracture problem in functionally graded materials (FGMs) plates for a crack perpendicular to material gradient. The crack-tip higher order asymptotic fields of FGMs plates are obtained by the asymptotic expansion method. This study has fundamental significance as Williams’ solution.


Author(s):  
Vu Hoai Nam ◽  
Nguyen Thi Phuong ◽  
Dang Thuy Dong ◽  
Nguyen Thoi Trung ◽  
Nguyen Van Tue

In this paper, an analytical approach for nonlinear buckling and post-buckling behavior of stiffened porous functionally graded plate rested on Pasternak's elastic foundation under mechanical load in thermal environment is presented. The orthogonal and/or oblique stiffeners are attached to the surface of plate and are included in the calculation by improving the Lekhnitskii's smeared stiffener technique in the framework of higher-order shear deformation plate theory. The complex equilibrium and stability equations are established based on the Reddy's higher-order shear deformation plate theory and taken into account the geometrical nonlinearity of von Kármán. The solution forms of displacements satisfying the different boundary conditions are chosen, the stress function method and the Galerkin procedure are used to solve the problem. The good agreements of the present analytical solution are validated by making the comparisons of the present results with other results. In addition, the effects of porosity distribution, stiffener, volume fraction index, thermal environment, elastic foundation… on the critical buckling load and post-buckling response of porous functionally graded material plates are numerically investigated.


Sign in / Sign up

Export Citation Format

Share Document