A Three-Dimensional Contact Model to Detect and Represent Contacts in Multibody-Systems

Author(s):  
D. Neuenhaus
2021 ◽  
Vol 18 (3) ◽  
pp. 172988142110177
Author(s):  
Jia Yonghao ◽  
Chen Xiulong

For spatial multibody systems, the dynamic equations of multibody systems with compound clearance joints have a high level of nonlinearity. The coupling between different types of clearance joints may lead to abundant dynamic behavior. At present, the dynamic response analysis of the spatial parallel mechanism considering the three-dimensional (3D) compound clearance joint has not been reported. This work proposes a modeling method to investigate the influence of the 3D compound clearance joint on the dynamics characteristics of the spatial parallel mechanism. For this purpose, 3D kinematic models of spherical clearance joint and revolute joint with radial and axial clearances are derived. Contact force is described as normal contact and tangential friction and later introduced into the nonlinear dynamics model, which is established by the Lagrange multiplier technique and Jacobian of constraint matrix. The influences of compound clearance joint and initial misalignment of bearing axes on the system are analyzed. Furthermore, validation of dynamics model is evaluated by ADAMS and Newton–Euler method. This work provides an essential theoretical basis for studying the influences of 3D clearance joints on dynamic responses and nonlinear behavior of parallel mechanisms.


Author(s):  
Stefan Reichl ◽  
Wolfgang Steiner

This work presents three different approaches in inverse dynamics for the solution of trajectory tracking problems in underactuated multibody systems. Such systems are characterized by less control inputs than degrees of freedom. The first approach uses an extension of the equations of motion by geometric and control constraints. This results in index-five differential-algebraic equations. A projection method is used to reduce the systems index and the resulting equations are solved numerically. The second method is a flatness-based feedforward control design. Input and state variables can be parameterized by the flat outputs and their time derivatives up to a certain order. The third approach uses an optimal control algorithm which is based on the minimization of a cost functional including system outputs and desired trajectory. It has to be distinguished between direct and indirect methods. These specific methods are applied to an underactuated planar crane and a three-dimensional rotary crane.


2013 ◽  
Vol 477-478 ◽  
pp. 21-24
Author(s):  
Hui Kai Gao ◽  
Jian Meng Huang

The contact between substrate and micro-cantilever simplified as an ideal flat substrate contact with a micro-cantilever rough surface. A three-dimensional adhesive contact model was established on isotropic rough surfaces exhibiting fractal behavior, and the equivalent plastic strain was discussed using the finite element analysis. The maximum equivalent plastic strain and its depth were presented with the different paths of rough solid when loading. The result show that the equivalent plastic strain versus different depth which at different locations showed different laws, in the top area of the asperities versus different depth, the maximum equivalent plastic strain occurs in the subsurface range about 0.5μm from the surface or on the surface. In addition, with different deformation characteristics, the degree of the equivalent plastic strain was different.. The contact model between micro-cantilever rough surface and flat substrate will lay a foundation to further research on the substance of the process of friction and wear.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10975
Author(s):  
Nicos Haralabidis ◽  
Gil Serrancolí ◽  
Steffi Colyer ◽  
Ian Bezodis ◽  
Aki Salo ◽  
...  

Biomechanical simulation and modelling approaches have the possibility to make a meaningful impact within applied sports settings, such as sprinting. However, for this to be realised, such approaches must first undergo a thorough quantitative evaluation against experimental data. We developed a musculoskeletal modelling and simulation framework for sprinting, with the objective to evaluate its ability to reproduce experimental kinematics and kinetics data for different sprinting phases. This was achieved by performing a series of data-tracking calibration (individual and simultaneous) and validation simulations, that also featured the generation of dynamically consistent simulated outputs and the determination of foot-ground contact model parameters. The simulated values from the calibration simulations were found to be in close agreement with the corresponding experimental data, particularly for the kinematics (average root mean squared differences (RMSDs) less than 1.0° and 0.2 cm for the rotational and translational kinematics, respectively) and ground reaction force (highest average percentage RMSD of 8.1%). Minimal differences in tracking performance were observed when concurrently determining the foot-ground contact model parameters from each of the individual or simultaneous calibration simulations. The validation simulation yielded results that were comparable (RMSDs less than 1.0° and 0.3 cm for the rotational and translational kinematics, respectively) to those obtained from the calibration simulations. This study demonstrated the suitability of the proposed framework for performing future predictive simulations of sprinting, and gives confidence in its use to assess the cause-effect relationships of technique modification in relation to performance. Furthermore, this is the first study to provide dynamically consistent three-dimensional muscle-driven simulations of sprinting across different phases.


Author(s):  
Walter Sextro

Abstract In many technical contacts energy is dissipated because of dry friction and relative motion. This can be used to reduce the vibration amplitudes. For example, shrouds with friction interfaces are used to reduce the dynamic stresses in turbine blades. The three-dimensional motion of the blades results in a three-dimensional relative motion of the contact planes. The developed Point-Contact-Model is used to calculate the corresponding tangential and normal forces for each contact element. This Point-Contact-Model includes the roughness of the contact surfaces, the normal pressure distribution due to roughness, the stiffness in normal and tangential direction and dry friction. An experiment with two non-Hertzian contacts is used to verify the developed contact model. The comparison between measured and calculated frequency response functions for three-dimensional forced vibrations of the elastic structures shows a very good agreement.


2020 ◽  
Vol 231 (10) ◽  
pp. 4397-4413
Author(s):  
Honghai Wang ◽  
Peng Jia ◽  
Liquan Wang ◽  
Feihong Yun ◽  
Gang Wang ◽  
...  

Author(s):  
AI El-Ghandour ◽  
CD Foster

Railways are the most common mode of transportation for both people and cargo due to its advantages in economy, safety, and comfort. The finite element method has been broadly used for more than three decades to model the different components of the railroad system such as rails, sleepers (cross ties), and substructure and has been used to investigate a variety of problems associated with rail mechanics. Different multibody systems dynamics software programs have also been developed to investigate the dynamic performance and contact behaviour between the rails and the wheels and to determine the contact forces. In this work, a full three-dimensional model that couples both the finite element method and the multibody systems dynamics has been used to study the railroad system. The main focus of this study is to model the bridge approach problem under dynamic load. The bridge approach problem arises from the sudden change in the foundation's stiffness under the rails at the bridge entry and exit, leading to high levels of stress and settlement that can also cause further problems over time. The effect of using a concrete slab at the bridge entry is also investigated in this study, using two slab designs: rectangular and inclined. The results show the effectiveness of the three-dimensional model and slab implementation on the forces and the vertical deformation, especially the inclined slab that applies a gradual change in the stiffness rather than a sudden change.


Author(s):  
Guofeng Zhou ◽  
Junwoo Kim ◽  
Yong Je Choi

The Jacobian approach to the kinestatic analysis of a planar suspension mechanism has been previously presented. In this paper, the theory is extended to three-dimensional kinestatic analysis by developing a full kinematic model and viewing it as a spatial parallel mechanism. The full kinematic model consists of two pairs of the front (double wishbone) and rear (multi-link) suspension mechanisms together with a newly developed ground-wheel contact model. The motion of each wheel of four suspension mechanisms is represented by the corresponding instantaneous screw at any instant. A vehicle is considered to be a 6-degrees-of-freedom spatial parallel mechanism whose vehicle body is supported by four serial kinematic chains. Each kinematic chain consists of a virtual instantaneous screw joint and a kinematic pair representing ground-wheel contact model. The kinestatic equation of the 6-degrees-of-freedom spatial parallel mechanism is derived in terms of the Jacobian. As an important application, a cornering motion of a vehicle is analysed under the assumption of steady-state cornering. A numerical example is presented to illustrate how to determine the optimal locations of strut springs for the least roll angle in cornering motion using the proposed method.


Sign in / Sign up

Export Citation Format

Share Document