Effects of Inertial Interaction in Seismic Soil-Pile-Structure Interaction

Author(s):  
D.M. Chu ◽  
K.Z. Truman
1994 ◽  
Vol 21 (3) ◽  
pp. 427-438
Author(s):  
Shamel Hosni ◽  
Arthur C. Heidebrecht

This study is carried out on a site-specific basis for three locations in Canada, namely Ottawa, Vancouver, and Prince Rupert. Soil models are developed to correspond to the soil classifications used to define the foundation factor, F, in the 1990 edition of the National Building Code of Canada (NBCC). Structural models are developed to represent both 20-storey ductile moment-resisting frames and ductile flexural walls. Three initial sets of actual ground motion records are scaled, in the frequency domain, to represent the postulated bedrock motions for each of the three sites. The computer program FLUSH is used to perform the numerical analyses of the various soil–structure systems. Results from the current study indicate that the code F values generally underestimate the site effects associated with the respective soil deposits, but appear to be reasonably adequate, in most cases, when soil–structure interaction effects are taken into consideration. In spite of some deficiencies in the code F values, the 1990 NBCC design base shear is shown to be quite conservative for regular high-rise reinforced concrete buildings. A simple measure to account for inertial interaction effects in uncoupled analyses is shown to provide a significant improvement, as compared to conventional uncoupled analyses, in the prediction of the coupled base shear demand. Key words: seismic, hazard, site, soil, structure, interaction, code, design, base, shear.


2021 ◽  
Vol 9 (11) ◽  
pp. 1285
Author(s):  
Cristina Medina ◽  
Guillermo M. Álamo ◽  
Román Quevedo-Reina

As a result of wind power’s expansion over the globe, offshore wind turbines (OWTs) are being projected in seismic prone areas. In parallel, the industry develops increasingly larger and more powerful generators. Many of the seismic response analyses of wind turbines conducted so far only consider smaller units. In this paper, a finite element substructuring model in frequency domain is used to compute the seismic response of four reference OWTs from 5 to 15 MW founded on monopiles embedded in several homogeneous soil profiles with shear wave velocities from 100 to 300 m/s and subjected to different accelerograms. The foundation behaviour is obtained through a continuum model including kinematic and inertial interaction. The relevance of soil-structure interaction and main trends of the seismic response of OWTs are inferred from the presented results. Although the seismic maximum bending moments increase with the size of the OWT system, their relevance with respect to the ones produced by design loads decreases as the turbine gets bigger. The same effect is observed for the shear forces if the soil is soft enough. The inclusion of SSI effects almost duplicates the seismic response when compared to the rigid base scenario.


2014 ◽  
Vol 12 (04) ◽  
pp. 320-336 ◽  
Author(s):  
Leila Khanmohammadi ◽  
Javad Vaseghi Amiri ◽  
Mohammad Reza Davoodi ◽  
Mohammad Ali Ghannad

2014 ◽  
Author(s):  
Abdul Aziz Mohd. Yusof ◽  
◽  
Ardiyansyah Syahrom ◽  
M. N. Harun ◽  
A. H. Omar

Sign in / Sign up

Export Citation Format

Share Document