Dynamic Behaviour of Tapered Plates subjected to Blast Loading

Author(s):  
S. Susler ◽  
Z. Kazanci ◽  
H.S. Turkmen
2012 ◽  
Vol 19 (6) ◽  
pp. 1235-1255 ◽  
Author(s):  
Sedat Susler ◽  
Halit S. Turkmen ◽  
Zafer Kazancı

In this study, the geometrically nonlinear dynamic behaviour of simply supported tapered laminated composite plates subjected to the air blast loading is investigated numerically. In-plane stiffness, inertia and the geometric nonlinearity effects are considered in the formulation of the problem. The equations of motion for the tapered laminated plate are derived by the use of the virtual work principle. Approximate solution functions are assumed for the space domain and substituted into the equations of motion. Then, the Galerkin method is used to obtain the nonlinear algebraic differential equations in the time domain. The resulting equations are solved by using the finite difference approximation over the time. The effects of the taper ratio, the stacking sequence and the fiber orientation angle on the dynamic response are investigated. The displacement-time and strain-time histories are obtained on certain points in the tapered direction. The results obtained by using the present method are compared with the ones obtained by using a commercial finite element software ANSYS. The results are found to be in an agreement. The method presented here is able to determine the nonlinear dynamic response of simply supported tapered laminated plates to the air blast loading accurately.


2020 ◽  
Vol 70 (6) ◽  
pp. 603-611 ◽  
Author(s):  
Viet-Chinh Mai ◽  
Ngoc-Quang Vu ◽  
Van-Tu Nguyen ◽  
Hoang Pham

Experimental studies play a crucial role in shedding light on the dynamic behaviour of structures under blast loading. However, high costs and complicated technical requirements, particularly for full-scale structures, are still huge disadvantages to conduct such a series of tests. Hence, the finite element method is much needed to provide supplementary information to previous experiments and to enable further parametric studies without testing. This article presents a numerical investigation carried out to understand the behaviour of ultra high performance fiber reinforced concrete (UHPFRC) panels under severe blast loading. The authors designed a subroutine with eight numbers of solution-dependent state variables, 32 mechanical constants, integrated with the Abaqus program to analyze the dynamic behaviour of UHPFRC against multiple blast impacts, using the Johnson-Holmquist 2 damage model incorporating both the damage and residual strength of the material. The subroutine was validated by comparing the simulation results with test results. For the purpose of estimating the structural response of the UHPFRC panel subjected to blast loading, other studying scenarios were considered by varying input parameters, including the thickness of the panel, stand-off distance, and steel reinforcement bar volume. The variations in deflection, strain, and damage of the UHPFRC panel, as well as the steel reinforcement strain, were also evaluated. Through important obtained results, the UHPFRC panel is strongly recommended for a protective barrier installed in the vicinity of critical infrastructure against severe blast loading


Author(s):  
Chetan Kumar Hirwani ◽  
Subrata Kumar Panda ◽  
Siba Sankar Mahapatra ◽  
Sanjib Kumar Mandal ◽  
Apurba Kumar De

In the present article, the dynamic behaviour of the delaminated composite plate subjected to blast loading has been investigated. For the investigation, a general finite element model using higher-order mid-plane kinematics has been developed. The model has been discretised using nine noded isoparametric Lagrangian elements having nine degrees of freedom at each node. The continuity in the laminated and delaminated section has been established using the intermittent continuity condition. The final governing equation has been solved by applying Newmark’s time integration scheme in conjunction with finite element steps. Further, the said responses have been evaluated by developing an in-house MATLAB code based on the proposed model. In order to illustrate the consistency and accuracy of the present model, convergence and comparison study has been conducted i.e. the responses are evaluated for different mesh sizes and compared them with those of responses of earlier published literature. Finally, various examples have been solved to illustrate the influence of the size and position of debonding, side to thickness ratio, aspect ratio and end condition on the dynamic response of composite structure and discussed in detail.


In the simple rigid-plastic theory of the dynamic behaviour of isothermal beams, deformation usually takes place at discrete hinges, except in the early stages of certain types of blast loading. For a beam subjected to rapid thermal curvature, discrete hinges cannot provide an adequate mechanism of deformation, and they are replaced by expanding and contracting hinges occupying a finite length of the beam. The expanding and contracting phases of a hinge are governed by the same general equations, but their physical characteristics are quite different: in particular, the angular velocity is continuous along the beam during expansion but discontinuous during contraction. A general analysis is given for a beam free in space, and detailed results for a variation of thermal curvature such as would be found in a pulsed nuclear reactor experiment.


2006 ◽  
Vol 134 ◽  
pp. 929-934 ◽  
Author(s):  
F. Malaise ◽  
J.-M. Chevalier ◽  
I. Bertron ◽  
F. Malka

2006 ◽  
Vol 134 ◽  
pp. 783-787 ◽  
Author(s):  
S. Ouellet ◽  
D. Frost ◽  
A. Bouamoul

Sign in / Sign up

Export Citation Format

Share Document